Temperature Zoning in Highly-Insulated Buildings

Colder Bedrooms in Winter with Warm Living Rooms

Laurent Georges and Vegard Heide Energy and Process Engineering Department, NTNU

Urban Home Ventilation, AIVC seminar, May 2020, Norway

Need for Colder Bedrooms in Norway (1)

- Without considering a specific building energy performance
- Survey (Bjorvatn et al. 2017)
 - 1001 Norwegians selected randomly
 - 70% with bedroom temperature < 18°C
 - Many with bedroom temperature < 12°C

□ NTNU

Need for Colder Bedrooms in Norway (2)

- Without considering a specific building energy performance
- Survey (Bjorvatn et al. 2017)
 - 1001 Norwegians selected randomly
 - Many keep bedroom windows always open, especially with age above 45

Temperature Zoning in nZEB (1)

- Limited temperature zoning in highly-insulated building envelopes
 - Highly-insulated external walls and high-performance windows
 - Centralized one-zone balanced mechanical ventilation with efficient heat recovery

3

Temperature Zoning in nZEB (2)

- Influence of building construction mode
 - Partition walls insulated in lightweight constructions
 - Positive effect on temperature zoning
 - Many lightweight wooden constructions in Norway

6

Temperature Zoning: example apartment (1)

• Two identical apartments from *Miljøbyen Granåsen* project in Trondheim

Conclusions for Lightweight Construction Based on measurements and simulations - Apartment block, terraced and detached houses at Norwegian passive house level Standard one-zone ventilation Need a heat sink Space-heating needs (E_{SH} Alternative ventilation strategy? $\Delta T = T_{\text{living}} - T_{\text{bedroom}}$ 2-3°C 0 NTNU

OPPTR

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Steady-State Analysis . Se

Setup

- Outdoor temperature selected to give typical temperature zoning
- Heavy-weight (CM1) and Lightweight (CM5) constructions
- Two different set-point temperature in living areas (21 and 24°C)
- Increase of space-heating needs analyzed ΔE_{SH} due to window opening in bedrooms

Conclusions (1)

- Heat conduction > ventilation effect in heavyweight buildings (CM1)
- Heat conduction ≈ ventilation effect in lightweight construction (CM5)

NTNU

Georges et al. 2019 OPP<mark>TR</mark>

35

Control and ventilation strategy (Tset, SH = 24°C, CM = 5)

Radiator AHU

d-5

c-5

Conclusions (1)

- Highly-insulated building with one-zone balanced mechanical ventilation
- Need to improve energy efficiency with large temperature zoning (> 3°C)
 - Simulations show that it is not a question of control
 - Need to change the building concept
- Important remarks
 - Buffer zone with intermediate temperature level effective for zoning
 - Results can be very different with less insulated partition walls (e.g. heavy-weight buildings)

19

Conclusions (2)

- Regarding the increase of space-heating needs with large zoning (ΔE_{SH})
- Question 1:
 - Heat conduction dominant in heavyweight buildings (non-insulated partition walls)
 - Effect heat conduction and ventilation have the same magnitude for lightweight buildings
 - Ventilation strategy cannot solve the problem alone
- Question 2:
 - Ventilation contribution can be moderately reduced by shutting down supply air in bedrooms of mechanical ventilation when bedroom windows are opened (strategy B)
 - Ventilation contribution can be moderately reduced by balancing airflows in bedrooms (strategy C, here still with a one single supply air temperature)
 - Ventilation contribution can be significantly reduced by decentralized ventilation (D)

NTNU

OPPTRE

References

- 1. B. Bjorvatn et al., Age and sex differences in bedroom habits and bedroom preferences, Sleep Medicine, 2017 (32)
- 2. Berge, M. and H.M. Mathisen, *Perceived and measured indoor climate conditions in high-performance residential buildings.* Energy and Buildings, 2016 (127), p. 1057-1073
- 3. Berge, M., J. Thomsen, and H.M. Mathisen, *The need for temperature zoning in high-performance residential buildings,* Journal of Housing and the Built Environment, 2016, p. 1-20
- 4. Berge, M., L. Georges, and H.M. Mathisen, *On the oversupply of heat to bedrooms during winter in highly insulated dwellings with heat recovery ventilation*. Building and Environment, 2016 (106), p. 389-401
- 5. Thomsen, J., et al., *Evaluering av boliger med lavt energibehov (EBLE) samlerapport*, in SINTEF Fag, 2017, SINTEF Byggforsk.
- 6. Georges, L., M. J. Alonso, R. Woods, K. Wen, F. Håheim, P. Liu, M. Berge and M. Thalfeldt, *Evaluation of Simplified Space-Heating Hydronic Distribution for Norwegian Passive Houses*, ZEB Project report 39, 2017
- 7. Georges, L., K. Wen, M. J. Alonso, M. Berge, J. Thomsen and R. Wang, Simplified space-heating distribution using radiators in super-insulated apartment buildings. Energy Procedia, 2016 (96): p. 455-466.
- 8. Georges, L., F. Håheim, and M.J. Alonso, *Simplified space-heating distribution using radiators in super-insulated terraced houses*. Energy Procedia, 2017 (132), p. 604-609.
- 9. Georges, L., E. Selvnes, V. Heide and H.M. Mathisen et al. *Energy efficiency of strategies to enable temperature zoning during winter in highly-insulated residential buildings equipped with balanced mechanical ventilation*, IOP Conference Series: Earth and Environmental Science Volume 352, Issue 1, 2019
- 10. Selvnes, E.,, *Thermal zoning during winter in super-insulated residential buildings* Master thesis at Energy and Process Engineering Department, Norwegian University of Science and Technology (NTNU), 2017

NTNU

OPPTR

🗅 NTNU

Case Study

- Control strategies changing set-points for
 - Heated zones, AHU heating coil, bedrooms, window and door opening

Cases	Livingareas	AHU	Bedrooms	Windows	Windows	Door
	T _{set,SH}	T _{set,AH}	T _{set,bed}	Schedule	T _{set,win}	Schedule
1	21 or 24°C	T _{set,SH} -3	T _{set,SH}	Closed	-	Closed
2	21 or 24°C	T _{set,SH} -3	None	Closed	-	Closed
3	21 or 24°C	16°C	None	Closed	-	Closed
4	21 or 24°C	14°C	None	Closed	-	Closed
5	21 or 24°C	T _{set,SH} -3	None	Open (Night)	16°C	Closed
6	21 or 24°C	16°C	None	Open (Night)	16°C	Closed
7	21 or 24°C	14°C	None	Open (Night)	16°C	Closed
8	21 or 24°C	T _{set,SH} -3	None	Open (Night)	16°C	Open (Day)

OPP**tre** 🖸 NTNU

Nominal Ventilation Airflow Rates

- Pre-accepted values from building code TEK17, leading design criteria:
 - Supply airflow in bedrooms in cascade ventilation
 - Exhaust airflow in "wet" rooms without cascade ventilation

Table 2.	Ventilation	airflow rates	for the	different	ventilation	strategies	[12].
7 1			33.71.4	1	d 1 >	***	(1)

Zone	Room	With cascade (With cascade (baseline)		Without cascade**	
		Supply [m ³ /h]	Return [m ³ /h]	Supply [m3/h]	Return [m ³ /h]	
1	Kitchen and Living	104	40	126	36	
2	Stairs	0	0	0	0	
3	Technical/Laundry	0	40	0	36	
4	Bathroom 1st floor	0	64	0	54	
5	Bathroom 2nd floor	0	64	0	54	
6	Bedroom SE	52	0	52	52	
7	Corridor 2nd floor	0*	0	54	0	
8	Bedroom SW	26	0	26	26	
9	Bedroom NW	26	0	26	26	
Total		208	208	284	284	

* In strategy (b), this airflow is 104 m³/h if the supply ventilation air in bedrooms is stopped.

** This corresponds to the strategy (c) and decentralized ventilation (d).