AIVC – SINTEF Community – OsloMet Workshop 'Urban Home Ventilation' | 19th May 2020 Part 3: Moisture Control

Moisture buffering in modern timber constructions

Dimitrios Kraniotis

Dep. of Civil Engineering & Energy Technology Oslo Metropolitan University - OsloMet <u>dimkra@oslomet.no</u>

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Norway: a country with long tradition in timber

Photo: Dagfinn Rasmussen, Riksantikvaren

Photo: Own archive

Photo: Own archive

Increased interest in use of engineered timber products

- Tradition is not the only reason
- Norway Strict national framework for energy use in buildings → dramatic reduction of energy use for heating since 1990 (-69%) (NEA, 2018)
- Ensure high indoor environmental quality (IEQ)
- Efforts to decrease the carbon footprint from building materials

ه Typical light timber construction

SINTEF Community, Byggforskserien

- Interior wooden cladding (softwood)
- Thin wooden boards, 12 14 mm
- Almost always painted

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

, Typical light timber construction

- Solid timber, exposed or covered by gypsum boards
- Thick wooden elements, 60 140 mm
- When exposed, treated with diffusion-open Osmo oil

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Modern timber constructions Cross Laminated Timber (CLT)

Leading the 'woodification' of building industry

Asplan Viak, 'The new Tøyen Swimming Hall'

Glulam from Swedish wood

Laftekompaniet AS

SINTEF Community, Byggforskserien

OSLO METROPOLITAN UNIVERSITY

STORBYUNIVERSITETET

Controlling the RH indoors

- DCV Moisture control, e.g. max at 50%
- Humidification / Dehumidification
- Adjusting respectively the air temperature indoors
- **Moisture buffering** in hygroscopic surfaces indoors, building materials, furnitures etc.

SI'ME Internal humidity loads according to ISO 13788

Moisture buffering and ventilation strategies

Photo: inhabitat.com

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Case study 1/4 - Field

What's the behaviour of CLT under extreme moisture load?

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

, Field test of moisture buffering capacity in CLT modules

Photo: Tormod Aurlien, NMBU

WEEE project - Wood, Energy, Emissions, Experience

13

14

- Norwegian Institute of Wood Technology
- OsloMet (earlier HiOA)
- NMBU
- Norwegian Institute of Air Research

Test modules:

- Volume V = 57 m^3
- Exhaust ventilation V' = 0.5 ACH
- Moisture load G = 0.62 kg/h (in total 5.8 kg) Very high load! ($\Delta v > 20 \text{ g/m}^3$)

Moisture buffering, energy potential, and volatile organic compound emissions of wood exposed to indoor environments K Nore A O Nyrud D Kraniotis K R Skulberg E Englund T Aurlien

K. Nore, A.Q. Nyrud, D. Kraniotis, K.R. Skulberg, F. Englund, T. Aurlien https://www.tandfonline.com/doi/abs/10.1080/23744731.2017.1288503

Field test of moisture buffering in CLT modules

What is the moisture buffering performance of CLT under controlled operational conditions in the lab?

16

Moisture buffering capacity of a CLT element

- Step 1: determination of MBV = 1.1 g/(%RH*m²) almost the same as reported in NordTest for wooden sample (softwood)
- Step 2: investigation of moisture buffering capacity under 'operational conditions'
 V = 37 m³ | V' = 57.5 m³/h (= 1.55 ACH = 3.82 m³/h*m²)

Moisture buffering capacity of a CLT element

Three different scenarios of moisture load:

- 1. Moisture load_{.8h} = 268.75 g/h
 - \rightarrow expected increase of humidity indoors = 268.75/57.5 = 4.7 g/m³ (RH_i \approx 45%)
 - \rightarrow actual increase of humidity indoors = 3.54 g/m³ (RH_i \approx 40%)
 - \rightarrow corresponding 'ventilative' effect of moisture buffering = 18.4 m³/h (total: 75.9 m³/h)
- 2. Moisture load $_{8h}$ = 312.5 g/h
 - \rightarrow expected increase of humidity indoors = 312.5/57.5 = 5.4 g/m³ (RH_i \approx 50%)
 - \rightarrow actual increase of humidity indoors = 3.7 g/m³ (RH_i \approx 41%)
 - \rightarrow corresponding 'ventilative' effect of moisture buffering = 27 m³/h (total: 84.5 m³/h)
- 3. Moisture load_{.8h} = **343.75 g/h**
 - \rightarrow expected increase of humidity indoors = 343.75/57.5 = 6 g/m³ (RH_i \approx 60%)
 - \rightarrow actual increase of humidity indoors = 3.8 g/m³ (RH_i \approx 45%)
 - \rightarrow corresponding 'ventilative' effect of moisture buffering = 33 m³/h (total: 90.5 m³/h)

Case study 3/4 - Field

What is the moisture buffering performance of CLT under fully operational conditions in-situ?

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Ulsholtveien 31, housing units in exposed CLT

Photo: Are Carlsen Design: Haugen/Zohar Arkitekter (HZA)

Norwegian Architecture Prize 2017 Wooden project of the year 2017

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET 19

Photo: own archive

bathroom

Ulsholtveien 31, housing units in exposed CLT

- Floor area of the tested appartment, $A = 56 m^2$
- Volume, V = 148 m³
- Decentralised ventilation, V' = 38 m³/h, in each of the three rooms (2 units in the kitchen/living room (34.4 m²) and 1 unit in each of the two bedrooms (7.3 m² and 9.7 m²)
- Exhaust ventilation in the bathroom, $V' = 50 \text{ m}^3/\text{h}$ when $\text{RH}_{i,\text{bath}} > 50\%$ or for 15 minutes every 2 hours

Interior finishing: exposed CLT, treated with diffusion open Osmo oil Interior finishing: cement board at the shower

Bedroom: $9\% < RH_i < 54\%$ (too high air temperature, i.e. $\theta_{i,bed} = 29$ °C) **Bathroom:** $18\% < RH_i < 66\%$ | water content in wood u = 8.1% - 11.7% < 15.4%**Kitchen/living room:** $17\% < RH_i < 55\%$ | [CO₂]: usually below 1150 ppm, max = 1550 ppm

Case study 4/4 – Simulation

What is the RH indoors in case CLT is replaced by gypsum boards and tiles (bathroom)?

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Numerical comparison between gypsum/tiles and CLT

	Bedroom CLT	Bedroom Gypsum board	Bathroom CLT + cement board	Bathroom Tiles	Kitchen/living room CLT	Kitchen/living room Gypsum board
RHi, min	9%	6% (-3%)	18%	9% (-9%)	17%	13% (-4%)
RHi, max	53%	58% (+5%)	66%	98% (+32%)	55%	63% (+8%)

23

- Under normal moisture loads, the corresponding ventilation effect (maxima of RH) of exposed wooden surfaces in residential buildings can be expected between 20% and 35% (lab investigation).
- In these conditions, the moisture content in CLT is **not critical for mould growth**, even when CLT exposed in bathrooms (affected by water vapour but not water) and being supported by low-level moisture control (field investigation).
- CLT manages contributes to keep maxima of RH indoors within accepted limits, i.e. < 60% (Category II) (field investigation).
- Overheating has negative consequences not only for the thermal environment but for moisture buffering capacity (minima of RH indoors) as well (field investigation).
- An equivalent apartment in **gypsum boards and tiles**, instead of CLT, would result to **both lower and higher values of RH indoors** (field investigation and simulation).

