Annex81: Data Driven Smart Buildings

Japan’s Activities and Challenges

Yasunori AKASHI (Professor, The University of Tokyo)

IEA Technology Collaboration Programme on Energy in Buildings and Communities Webinar
“Building Energy Efficiency and Indoor Air Quality”

9th November 2021, 12:00-15:00 UTC / GMT

Participation in Annex81

◼ Three main motivations for Japan's participation
 ➢ Urgent issue for **decarbonization** of buildings
 ➢ Importance of **data driven operation** in **existing** buildings
 ➢ Deeply related to the creation of **new value and business** in the field of building services

◼ Domestic committee for Annex 81
 ➢ 13 companies, 1 NPO, 2 universities (20 people)

<table>
<thead>
<tr>
<th>Chairperson & Secretaries</th>
<th>Industry/Univ., NPO</th>
<th>Affiliation</th>
<th>Number of People</th>
</tr>
</thead>
<tbody>
<tr>
<td>University</td>
<td>The University of Tokyo, Tokyo Denki University</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NPO</td>
<td>Building Services Commissioning Association</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Members</th>
<th>Industry/Univ., NPO</th>
<th>Affiliation</th>
<th>Number of People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>NIKKEN SEKKEI, NTT Facilities, P.T.Morimura & Associates</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Dai-Dan, Kyudenko, Shinryo, Takasago Thermal Engineering, TONETS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>HVAC Manufacturer</td>
<td>DAIKIN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Automatic control</td>
<td>Azbil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Kansai Electric Power, OSAKA GAS, Tokyo Electric Power</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Example 1 from Japan #1

In the meetings of Annex81, we provided two examples in Japan on data-driven operations in building systems.

Example 1: Commissioning(Cx) of Kyoto Station Building

- A complex building (station, hotel, department store, theater, etc.) with the total floor of about 23,600m² (built in 1997)
- Fully applied the Cx process to the large-scale water-side system retrofit project (2010-2019)
- First case of business-based Cx implementation with Cx fees in Japan
- The energy saving of 60% targeted in the OPR has been achieved
 - 8% reduction has been achieved using the measured data of EMS in the FPT and operational optimization during the first three years after the completion

Example 1 from Japan #2

For the aspects of simulation and data-driven operation in this example,

- Development of the detailed simulation with automatic controls
- Development of the applications for the optimal control logic of the chillers using the simulation
- These applications and the data of EMS optimize the actual operation, resulting in the additional 8% energy saving.

Simulation originally developed by the Cx provider (Prof Emer. Yoshida, Kyoto Univ.)
Example 2 from Japan #1

Example 2: Automated Fault Detection and Diagnosis (AFDD) in a HVAC water-side system of a semiconductor plant

- Conventional manual FDD and optimization are extremely inefficient, so they are rarely implemented, including in general building systems.
 - Since it is not possible to know in advance which faults are occurring, it is necessary to check all data in the end.
- However, some reports indicate that the FDD and operational optimization can reduce building energy consumption of 10-30%.

Example 2 from Japan #2

- For the aspects of simulation and data-driven operation in this example,
 - Development of the detailed simulation with automatic controls
 - Development of the applications for AFDD using the simulation and machine learning
 - Now, these applications are being demonstrated in the actual system to verify the effectiveness of the AFDD method.
What we learned from the examples/Annex81 for Japan

- **Data and applications** can improve building energy performance in the operation.
- **Various data and applications** need to be utilized in buildings on a plug-and-play basis. It will **upgrade building energy performance** according to the building usage.
- In Japan, there is very little use of such data and applications. The construction industry in Japan is just at the tipping point.
 - An open platform is still not used in most buildings.
 - A Cloud EMS is used in each example, but it does not have mechanism to efficiently manage large amounts of data such as a Graph DB.

- **Important points** for promoting decarbonization of existing buildings
 - Developing data-driven system that can be installed relatively easily during retrofit or normal time,
 - Making building owners and occupants understand the value of installing the technologies with the value of data-driven smartification,
 - Human resources for system integration and application development

Data platform, meta data schema, applications for data-driven operation