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16, 17. An overview will be given of applied 

data and analysis with CTSM-R.
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The application of the Grey Box modelling method
CTSM-R is described in order to obtain the Heat Loss
Coefficient (HLC) results for the provided data.

Other methods such as the average method and
LORD has also been applied to the data in order to
compare the results between the methods. However,
only the CTSM-R results are shown.

0.0 – Aim and Background

4/45

0.0 – Aim and Background

• There can be seen a considerable “performance gap” between the real and the
designed energy consumption in buildings.

• In order to carry out a correct building envelope energetic characterization it is
indispensable to analyse its:

Heat Loss Coefficient (HLC)  [W/°C]           

Infiltration and ventilation 
heat loss

(Cv [W/°C])

Transmission heat loss 
(UA [W/°C]) +

=
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1.0 – Introduction

• The characterization of the Round Robin Test Box in order to analyse how it
behaves.

1.1- Test box

• Round Robin Experiment is proposed as first step before start analysing real building
cases.

• Then, it will be easier to investigate the issues in current buildings.

• The investigated test box has a cubic form with
exterior dimensions of 120x120x120 𝑐𝑚3.

• The window glazing area dimensions are 52x52 𝑐𝑚2.

• The box is not in contact with the floor, so is
considered that it is floating in free air.
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1.2- Test location and period

• The experiment has been carried out at Plataforma Solar de Almeria (PSA), Spain. 

• The testing period started the 6th of December of 2013 and ended the 7th of 

January of 2014. 

• The test has been developed under real weather conditions.

1.3- Data acquisition:

• Several sensors were installed in order to measure the data affecting the box.

• The measured parameters are shown in the following table:

• The data has been read and recorded every minute in the GMT timeframe in three 

datasets.

Temperature Solar radiation Humidity Wind characteristics Heating

4 air temperature sensors 1 vertical south, 1 vertical north and 1 
horizontal global solar radiation sensor

1 relative humidity
sensor

1 wind speed sensor 1 heat power
sensor

14 surface temperatura 
sensors

1 beam solar radiation and 1 diffuse solar 
radiation sensor

1 wind direction sensor 6 heat flux 
sensors

8 average surface
temperatura sensors

1 horizontal and 1 vertical long wave 
radiation sensor

1.0 – Introduction
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2.0 – Pre-processing:

2.1- Input data

Only the following parameters have been necessary in order to estimate the HLC of the
box:

▪ Ambient temperature (Ta, °C): The ambient air temperature has been
measured by several sensors:

- Two air temperature sensors located in the lower side and the middle side
of the box.

▪ Internal temperature (Ti, °C): The internal temperature has also been measured
by several sensors:

- Two air temperature sensors located in the lower side (1/3 height
of the box) and the upper side (2/3 height of the box) of the box.

▪ Heating power (Ph, W): The heating device used in order to provide heating
power into the box has been a 100W incandescent lamp.

▪ Solar radiation (Gv, vertical south global solar radiation (W/𝑚2)): The exercise
has provided data for every type of radiation affecting the box. However, since
the window of the box is orientated to the south, the vertical south global solar
radiation will be the main solar radiation signal affecting the HLC estimation.

All data was provided in minutes. However, due to some difficulties found when working
with the methods, the data has been converted into hourly data.
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2.0 – Pre-processing:
2.2- Provided data:

PSA_data_Series16
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2.0 – Pre-processing:
2.2- Provided data:

PSA_data_Series17
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2.0 – Pre-processing:
2.3- Analysed data:
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2.0 – Pre-processing:
2.3- Analysed data:
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3.0 – Modelling:

3.1- Grey Box Models:

• The grey box models are also useful in order to identify the internal dynamics of a

building or a box in this case.

• This method works with a model case, where each model includes the internal

parametrization of the model. In order words, the models need to have some

previous physical knowledge in order to make proper estimations.

Thus, during the grey box models analysis, the simplest one will be the first model been

studied and then, the model will be becoming more complex. Thus, a set from the

simplest to the most complex model will be fitted and the results will be described.

There, the physical part is stochastic linear state-space model and the dynamics of the

states are written as;

𝑑𝑇 = 𝐴𝑇𝑑𝑡 + 𝐵𝑈𝑑𝑡 + 𝑑𝜔

where T is the state vector (depending on the model this varies) and U is the input vector,

and A and B are the estimated parameters. All the considered models have an input

vector with three inputs:

𝑈 = [𝑇a, 𝑃ℎ , 𝐺𝑣 ]

where Ta is the ambient temperatura, Ph the internal heat and Gv the solar gains.
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The figure shows the most complex model that could be find when working with grey box

models:

This model have six parts that will be combined in order to estimate the rest of the models.

The parts are the interior, the medium, the heater, the solar radiation, the envelope and the

ambient.

3.0 – Modelling:

As seen, this model includes four state variables that represent the temperature in each part of

the building; the interior temperature (Ti), the medium temperature (Tm), the heater

temperature (Th) and the building envelope temperature (Te).
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Once all the models are plotted, the maximum likelihood estimates of the parameters can

be achieved. Thus, it will be possible to compare them and select the most reliable model for

the selected data.

3.0 – Modelling:

Also the heat capacities of each of the parts are presented as Ci (for the interior), Cm (for the

medium part or interior wall), Ch ( for the heater) and Ce (for the building envelope). Moreover,

also the effective window area (Aw) is estimated.

The thermal resistances and heat

capacities are also parameters of

the model. Between the resistances

Rim (thermal resistance between the

interior part and the medium part),

Rih (thermal resistance between the

interior part and the heater part), Rie

(thermal resistance between the

interior temperature and the

envelope part) and Rea (thermal

resistance between the envelope
and the ambient).

Finally, ωi,t, ωm,t, ωh,t and ωe,t are standard Wiener processes, and 𝝈𝒊
𝟐, 𝝈𝒎

𝟐 , 𝝈𝒉
𝟐 and 𝝈𝒆

𝟐 are

the incremental variances of the Wiener processes.
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3.2- Data introduction:
3.2.1- Call the packages and set the directory:

library(gtools)  → Charges some R tools
library(lubridate) → Allows to work with data times

library(ctsmr) → Activates the CTSM-R

setwd("/Users/iuriarte036/Desktop/doctorado/03CURSOS/06Almeria curso/Exercise")

3.2.2- Call the data (CSV files):

December16_1 <- read.csv("Data/Almeria16_1.csv",header=TRUE,sep=",",dec=".", skip=0,stringsAsFactors = 
FALSE)

3.2.3- Identify the data and modify:

db.december16_1=data.frame(date=December16_1$Time..DD.MM.AAAA.h.mm.,Ti1=December16_1$Ti_
up,Ti2=December16_1$Ti_down,Te1=December16_1$Te_down,Te2=December16_1$Te_middle,Gv=Dece

mber16_1$Gv, Q=December16_1$P_heating)

In order to obtain the required data, the provided data is modified. Therefore, the internal heat is 
converted from W into kW, the external and internal average temperatures are calculated… 

3.2.4- Join the data in the same file and save it:

db.december_1= rbind(db.december16_1, db.december17_1)

saveRDS(db.december_1, file = paste0("Data1/db.december_1.RData"))

3.0 – Modelling:

16/45

3.3- Model selection process:

3.3.1- Call the packages and set the directory:

library(gtools)  → Charges some R tools
library(lubridate) → Allows to work with data times

library(ctsmr) → Activates the CTSM-R

setwd("/Users/iuriarte036/Desktop/doctorado/03CURSOS/06Almeria curso/Exercise")

3.3.2- Call the source with the scripts where the models are saved:

files <- dir("functions2", full.names=TRUE )
for(i in 1:length(files)) source(files[i])

3.3.3- Set the latitud and the longitud:

prm <- list()
prm$latitude <- 37.09

prm$longitude <- -2.36

3.3.4- Call the file:

data= readRDS("Data1/db.december_1.RData")

3.0 – Modelling:
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3.3.5- Set the best period:
The provided data is too long in order to obtain good results with the model. Then, analysis has
been carried out using two different period; the series 16 period between the 9th of December 2013
and the 13th of December 2013 and the period of series 17 between the 18th of December 2013
to the 22nd of December 2013.Therefore, the data is converted into a readable code and is limited
using the following code:

data$timedate=as.POSIXct(data$timedate, tz="UTC") 
data= data[order(data$timedate, decreasing = FALSE),]
t.start = strptime("2013-12-18 20:59:00", format = "%Y-%m-%d %H:%M:%S") 
t.end = strptime("2013-12-22 04:59:00", format = "%Y-%m-%d %H:%M:%S")
t0 = which(data$timedate == t.start)
tN = which(data$timedate == t.end)
data = data[(t0+1):(tN+1),]

3.3.6- Plot the selected period:
In order to see the selected period data it will be plotted using the following code:

data$timedate <- asP(data$timedate) 
data$t <- asHours(data$timedate-data$timedate[1])
plotTSBeg(3,cex=0.7)
plot(data$timedate,data$Ph,type="l")
plot(data$timedate,data$Ta,type="n",ylim=c(0,45))
lines(data$timedate,data$Ta)
lines(data$timedate,data$yTi,col=2)
plot(data$timedate,data$Gv,type="l")
plotTSXAxis(data$timedate)

3.0 – Modelling:
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3.3.7- Generate the weight vectors:

Since the residuals obtained when plotting the models were not good, weight vectors are applied in
order to obtain better residuals. Thus, the model will behave differently when the heater is switched on
or off:

i <- which(abs(diff(data$Ph))>2)
data$weights = 0
weightsAfterSwitch =1 # how long do you want to consider it
L <- unique(c(sapply(i,function(x){(x-1):(x+weightsAfterSwitch)})))
if(length(L)>0)
{
data$weights[L] <- 1

data$weights[1:min(which(data$weights==1))] <- 1
}
par(mfrow= c(1,1))
plot(data$Ph,type="l", col=1)
lines(data$weights,type="l", col=5)
points(data$weights)

3.0 – Modelling:

These weights will be after introduced as input in the diffusion term of the state formula, which will make

the models provide better residuals. Therefore, it also means that it will be easier for the model to

estimate the real value of the parameters.

17
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3.3.8- Models:

Since there are several models to be tested, the structure of the most simple model (Ti model) 
will be shown first: 

sdeTi <- function(data, weighting)
{
##Fit a SDE model for the room
## Be a bit smart and do the same in a function, see functions/Ti.R
if(weighting){   
model <- ctsm()
## Add a system equation and thereby also a state
model$addSystem(dTi ~ ( 1/(Ci*Ria)*(Ta-Ti) + 1/Ci*Ph + Aw/Ci*Gv)*dt

+(1+(weights*Wlev))*exp(p11)*dw1)
## Set the names of the inputs
model$addInput(Ta,Ph,Gv,weights)
## Set the observation equation: Ti is the state, yTi is the measured 

output
model$addObs(yTi ~ Ti)
## Set the variance of the measurement error
model$setVariance(yTi ~ exp(e11))

0

3.0 – Modelling:

Ti

functions2
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3.3.8- Models:

## Set the initial value (for the optimization) of the value of the state at the starting time point 
model$setParameter(  Ti0 = c(init=15 ,lb=0 ,ub=60 ) )

## Set the initial value for the optimization
model$setParameter(  Ci = c(init=1 ,lb=1E-4 ,ub=1E7 ) )
model$setParameter( Ria = c(init=20 ,lb=1E-3 ,ub=1E5) )
model$setParameter( p11 = c(init=1  ,lb=-30 ,ub=10 ) )
model$setParameter( e11 = c(init=-1 ,lb=-100 ,ub=100 ) )
model$setParameter( Aw = c(init=8 ,lb=1E-6 ,ub=50 ) )
model$setParameter( Wlev= c(init=10  ,lb=0    ,ub=100) )

}
## Run the parameter optimization
fit <- model$estimate(data, firstorder=prm$firstorder)
fit$Rnames <- c("Ria")
#For HTC
return(fit)

}

3.0 – Modelling:

19
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3.3.9- Other models:

3.0 – Modelling:

## Set the initial value (for the optimization) of the value of the state at 
the starting time point

model$setParameter(  Ti0 = c(init=15 ,lb=0 ,ub=100 ) )
model$setParameter(  Te0 = c(init=15 ,lb=0 ,ub=200 ) )

## Set the initial value for the optimization
model$setParameter(  Ci = c(init=3 ,lb=1E-5 ,ub=60 ) )
model$setParameter(  Ce = c(init=3 ,lb=1E-5 ,ub=2E5) )
model$setParameter( Rie = c(init=20 ,lb=1E-4 ,ub=2E2) )
model$setParameter( Rea = c(init=20 ,lb=1E-4 ,ub=1E5) )
model$setParameter( p11 = c(init=1  ,lb=-30 ,ub=20 ) )
model$setParameter( p22 = c(init=1  ,lb=-30 ,ub=20 ) )
model$setParameter( e11 = c(init=-1 ,lb=-50 ,ub=10 ) )
model$setParameter( Aw = c(init=6 ,lb=1E-2 ,ub=200 ) )
model$setParameter( Wlev= c(init=10  ,lb=0    ,ub=100) )

}

## Run the parameter optimization
model$options$maxNumberOfEval =2000
fit <- model$estimate(data, firstorder=prm$firstorder)
fit$Rnames <- c("Rie","Rea")
return(fit)

}

sdeTiTe <- function(data, weighting)
if(weighting){

model <- ctsm()
## Add a system equation and thereby also a state
model$addSystem(dTi ~ ( 1/(Ci*Rie)*(Te-Ti) + 1/Ci*Ph + Aw/Ci*Gv

)*dt +(1+(weights*Wlev))*exp(p11)*dw1)
model$addSystem(dTe ~ ( 1/(Ce*Rie)*(Ti-Te) + 1/(Ce*Rea)*(Ta-

Te))*dt +(1+(weights*Wlev))*exp(p22)*dw2)
## Set the names of the inputs
model$addInput(Ta,Ph,Gv,weights)
## Set the observation equation: Ti is the state, yTi is the measured 

output
model$addObs(yTi ~ Ti)
## Set the variance of the measurement error
model$setVariance(yTi ~ exp(e11))

TiTe
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3.3.9- Other models:

3.0 – Modelling:

## Set the initial value (for the optimization) of the value of the state at the 
starting time point

model$setParameter(  Ti0 = c(init=25 ,lb=0 ,ub=70 ) )
model$setParameter(  Te0 = c(init=25 ,lb=0 ,ub=70 ) )
model$setParameter(  Th0 = c(init=25 ,lb=0 ,ub=150 ) )

## Set the initial value for the optimization
model$setParameter(  Ci = c(init=10 ,lb=1E-2 ,ub=1E6 ) )
model$setParameter(  Ce = c(init=10 ,lb=1 ,ub=1E7) )
model$setParameter(  Ch = c(init=10 ,lb=1E-2 ,ub=1E6 ) )
model$setParameter( Rie = c(init=1,lb=1E-6 ,ub=100) )
model$setParameter( Rea = c(init=1 ,lb=1E-6 ,ub=1000) )
model$setParameter( Rih = c(init=1 ,lb=1E-6 ,ub=100) )
model$setParameter( p11 = c(init=1  ,lb=-30 ,ub=30 ) )
model$setParameter( p22 = c(init=1  ,lb=-30 ,ub=30 ) )
model$setParameter( p33 = c(init=1  ,lb=-25 ,ub=30 ) )
model$setParameter( e11 = c(init=-1 ,lb=-30 ,ub=50 ) )
model$setParameter( Aw = c(init=2 ,lb=1E-3 ,ub=300) )
model$setParameter( Wlev= c(init=10  ,lb=0    ,ub=100) )

}

## Run the parameter optimization
model$options$maxNumberOfEval =2000
fit <- model$estimate(data, firstorder=prm$firstorder)
fit$Rnames <- c("Rie","Rea")
return(fit)

}

sdeTiTeTh <- function(data, weighting)
if(weighting){  

model <- ctsm()
## Add a system equation and thereby also a state
model$addSystem(dTi ~ ( 1/(Ci*Rih)*(Th-Ti) + Aw/Ci*Gv+ 1/(Ci*Rie)*(Te-

Ti) )*dt +(1+(weights*Wlev))*exp(p11)*dw1)
model$addSystem(dTe ~ ( 1/(Ce*Rea)*(Ta-Te)+ 1/(Ce*Rie)*(Ti-Te))*dt

+(1+(weights*Wlev))*exp(p22)*dw2)
model$addSystem(dTh ~ ( 1/(Ch*Rih)*(Ti-Th)+ 1/Ch*Ph)*dt

+(1+(weights*Wlev))*exp(p33)*dw3)
## Set the names of the inputs
model$addInput(Ta,Ph,Gv,weights)
## Set the observation equation: Ti is the state, yTi is the measured output
model$addObs(yTi ~ Ti)
## Set the variance of the measurement error
model$setVariance(yTi ~ exp(e11))

TiTeTh
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3.3.9- Other models:

3.0 – Modelling:

## Set the initial value (for the optimization) of the value of the state 
at the starting time point

model$setParameter(  Ti0 = c(init=15 ,lb=0 ,ub=50 ) )
model$setParameter(  Tm0 = c(init=15 ,lb=0 ,ub=100000) )

## Set the initial value for the optimization
model$setParameter(  Ci = c(init=1 ,lb=1E-3 ,ub=50 ) )
model$setParameter(  Cm = c(init=1 ,lb=1E-2 ,ub=500 ) )
model$setParameter( Ria = c(init=20 ,lb=1E-3 ,ub=1E3) )
model$setParameter( Rim = c(init=20 ,lb=1E-3 ,ub=1E6) )
model$setParameter( p11 = c(init=1  ,lb=-30 ,ub=10 ) )
model$setParameter( p22 = c(init=1  ,lb=-30 ,ub=10 ) )
model$setParameter( e11 = c(init=-1 ,lb=-50 ,ub=10 ) )
model$setParameter( Aw = c(init=6 ,lb=1E-2 ,ub=100 ) )
model$setParameter( Wlev= c(init=10  ,lb=0    ,ub=200) )
} 

## Run the parameter optimization
model$options$maxNumberOfEval =2000
fit <- model$estimate(data, firstorder=prm$firstorder)
fit$Rnames <- c("Ria")

return(fit)
}

sdeTiTm <- function(data, weighting)
if(weighting){

model <- ctsm()
## Add a system equation and thereby also a state
model$addSystem(dTi ~ ( 1/(Ci*Rim)*(Tm-Ti) + 1/Ci*Ph + Aw/Ci*Gv+ 

1/(Ci*Ria)*(Ta-Ti) )*dt +(1+(weights*Wlev))*exp(p11)*dw1)
model$addSystem(dTm ~ ( 1/(Cm*Rim)*(Ti-Tm))*dt

+(1+(weights*Wlev))*exp(p22)*dw2)
## Set the names of the inputs
model$addInput(Ta,Ph,Gv,weights)
## Set the observation equation: Ti is the state, yTi is the measured 

output
model$addObs(yTi ~ Ti)
## Set the variance of the measurement error
model$setVariance(yTi ~ exp(e11))

TiTm
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3.3.9- Other models:

3.0 – Modelling: ## Set the initial value (for the optimization) of the value of the state at 
the starting time point

model$setParameter(  Ti0 = c(init=15 ,lb=0 ,ub=60 ) )
model$setParameter(  Tm0 = c(init=15 ,lb=0 ,ub=500 ) )
model$setParameter(  Th0 = c(init=15 ,lb=0 ,ub=50 ) )
## Set the initial value for the optimization
model$setParameter(  Ci = c(init=3 ,lb=1E-3 ,ub=1E2 ) )
model$setParameter(  Ch = c(init=3 ,lb=1E-3 ,ub=1E7 ) )
model$setParameter(  Cm = c(init=3 ,lb=1E-3 ,ub=1E2 ) )
model$setParameter( Ria = c(init=3 ,lb=1E-2 ,ub=1E3) )
model$setParameter( Rih = c(init=3 ,lb=1E-2 ,ub=1E4) )
model$setParameter( Rim = c(init=3 ,lb=1E-2 ,ub=1E4) )
model$setParameter( p11 = c(init=1  ,lb=-30 ,ub=10 ) )
model$setParameter( p22 = c(init=1  ,lb=-30 ,ub=20 ) )
model$setParameter( p33 = c(init=1  ,lb=-30 ,ub=10 ) )
model$setParameter( e11 = c(init=-1 ,lb=-50 ,ub=10 ) )
model$setParameter( Aw = c(init=6 ,lb=1E-4 ,ub=3000 ) )
model$setParameter( Wlev= c(init=10  ,lb=0    ,ub=1000) )

}

## Run the parameter optimization
model$options$maxNumberOfEval =2000
fit <- model$estimate(data,  firstorder=prm$firstorder)
fit$Rnames <- c("Ria")

return(fit)
}

sdeTiTmTh <- function(data, weighting)
if(weighting){

model <- ctsm()
## Add a system equation and thereby also a state
model$addSystem(dTi ~ ( 1/(Ci*Rim)*(Tm-Ti) + 1/(Ci*Rih)*(Th-Ti)+ 

Aw/(Ci)*Gv+ 1/(Ci*Ria)*(Ta-Ti) )*dt
+(1+(weights*Wlev))*exp(p11)*dw1)

model$addSystem(dTm ~ ( 1/(Cm*Rim)*(Ti-Tm))*dt
+(1+(weights*Wlev))*exp(p22)*dw2)

model$addSystem(dTh ~ ( 1/(Ch*Rih)*(Ti-Th)+ 1/(Ch)*Ph)*dt
+(1+(weights*Wlev))*exp(p33)*dw3)

## Set the names of the inputs
model$addInput(Ta,Ph,Gv,weights)
## Set the observation equation: Ti is the state, yTi is the measured 

output
model$addObs(yTi ~ Ti)
## Set the variance of the measurement error
model$setVariance(yTi ~ exp(e11))

TiTmTh
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3.3.9- Testing the models:

Once all the previous procedures are completed, the models will be tested and selected 
depending on their results. Therefore, all the convergent models will be analysed one by 
one. 

Ti model

Insignificant

In case these values were significant, the limits given to the parameters in the model should be changed.  

3.0 – Modelling:
Fit.sdeTi = sdeTi(data, weighting =T)

analyzeFit(Fit.sdeTi)
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3.0 – Modelling:
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The ACF shows that the residuals are not white noise since there are still some peaks. However, the periodogram is able to
describe quite well the dynamics of the building since it is inside the bandwidth. The reason for having bad result in the ACF can
be related with the correlation between inputs values.

3.0 – Modelling: Residuals

28/45

TiTe model

Insignificant

3.0 – Modelling:
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3.0 – Modelling:

30/45

Residuals

The ACF shows that the residuals are close to be white noise since all the peak are inside the limits. The periodogram is also
able to describe quite well the dynamics of the building since it is inside the bandwidth. There is not any observable correlation
between the input data.

3.0 – Modelling:
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TiTeTh model

Insignificant

3.0 – Modelling:
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3.0 – Modelling:
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3.0 – Modelling: Residuals

The ACF shows that the residuals are not white noise since there are some peak outside the limits. The periodogram is
describing quite well the dynamics of the building but not as well as in previous cases since it is close to cross the bandwidth
lines. This residual results are probably related to the input data correlation.

34/45

TiTm model

Insignificant

3.0 – Modelling:
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3.0 – Modelling:

36/45

Residuals
3.0 – Modelling:

The ACF shows that the residuals are close to be white noise since all the peak are inside the limits. The periodogram is also
able to describe quite well the dynamics of the building since it is inside the bandwidth. There is not any observable correlation
between the input data.
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TiTmTh model

Insignificant

3.0 – Modelling:
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3.0 – Modelling:
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Residuals

The ACF shows that the residuals are not white noise since there are several peak outside the limits. The periodogram is not
showing good the dynamics of the building since the line is going out of the bandwidth. This residual results are probably
related to the input data correlation.

3.0 – Modelling:
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3.3.10- Evaluating and selecting the models:

Once all the models have been tested and the residuals analysed, it is indispensable to

make a comparison between the obtained results. Therefore, the Likelihood Ratio Test is

used:

DATASET

16
Log-likelihood

p-value

(LRT)

Ti -71.0

TiTe -1.5 0 (Ti ->TiTe)

TiTeTh -48.9 1 (TiTe ->TiTeTh)

TiTm -9.2 0 (Ti ->Tm)

TiTmTh - - (TiTm ->TiTmTh)

The Likelihood Ratio Test value is achieved as D = 2 (log LA - log LB), where log LA is
the logarithm of the likelihood function for model A. Given that the model can be reduced
to model B the quantity D is 𝜒2 (k - m) distributed, where k and m are the number of
parameters in model A and B, respectively.

D <- 2*(log LA - log LB)

c <- 4 (k-m)

p-value <- 1- pchisq (D, c)

3.0 – Modelling:

DATASET

17
Log-likelihood

p-value

(LRT)

Ti 82.7

TiTe 101.9 9.7* 10-8 (Ti ->TiTe)

TiTeTh 76.5 1 (TiTe ->TiTeTh)

TiTm 93.4 2.8* 10-4 (Ti ->Tm)

TiTmTh -76.3 1 (TiTm ->TiTmTh)
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3.3.11- Heat Loss Coefficient calculation:

Then, it is necessary to estimate the HLC of the models in order to see the result for each 
of the models: 

analyzeHTC <- function(fit, tPer=NA, plotACF=FALSE, plotSeries=FALSE, plotMore=FALSE, newdev=FALSE, acfRmNA=FALSE, acftext="", 
printSummary=TRUE,...)

{ 

## Calculate the loglikelihood value

if(printSummary) print(paste("Loglikelihood", format(fit$loglik,digits=2)))

##----------------------------------------------------------------

## The estimated HTC-value 

i <- which(names(fit$xm)%in%fit$Rnames)

HTC <- 1/sum(fit$xm[i])

if(printSummary) print(paste("HTC:",format(HTC,digits=4))) ## W/C

## The covariance for the two estimated R values

ii <- which(colnames(fit$corr)%in%fit$Rnames)

if(length(i)==1) cov <- fit$sd[i] * fit$corr[ii,ii] * fit$sd[i]

else cov <- diag(fit$sd[i]) %*% fit$corr[ii,ii] %*% diag(fit$sd[i])

#if(printSummary) print(paste("Cov = ",cov))

## Calculate the uncertainty of the HTC value with a linear approximation to the covariance

## The Jacobian, the derived of the HTC-value with respect to each estimate in fit$xm[i]

J <- t( sapply(1:length(i), function(ii,x){ -1/sum(x)^2 }, x=fit$xm[i]) )

## The estimated variance of HTC

varHTC <- J %*% cov %*% t(J)

## and standard deviance

sdHTC <- sqrt(varHTC)

## Return the confidence interval

if(printSummary) print(paste("HTC 95% confidence band:",paste(format(c(HTC-1.96*sdHTC,HTC+1.96*sdHTC),digits=4),collapse=" to ")))

#if(printSummary) print(paste("HTC 95% values:",paste(format(c(1-((HTC-1.96*sdHTC)/HTC),((HTC+1.96*sdHTC)/HTC)-
1),digits=4),collapse=" and ")))

}

3.0 – Modelling:
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3.3.12- Solar aperture calculation:

Then, it is necessary to estimate the Sa of the models in order to see the result for each of 
the models: 

## The gA value

gA <- fit$xm["Aw"]

#names(gA) <- NULL

sdgA <- fit$sd["Aw"]

#names(sdgA) <- NULL

if(printSummary) print(paste("gA:",paste(format(gA,digits=2)))) ## W/C

if(printSummary) print(paste("gA 95% confidence band:",paste(format(c(gA-1.96*sdgA, gA+1.96*sdgA),digits=2),collapse=" to ")))

3.0 – Modelling:
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If the HLC is estimated for all the models, the following results will be achieved:

After the Likelihood Ratio Test we assumed that the obtained best model is the TiTe

model for both cases. Therefore, it will be estimated as the best one for the provided data

two datasets. In this case, the obtained HLC values for dataset 16 is 4.1W/°C and for

dataset 17, 4.2W/°C. Moreover, the same solar apertura value has been estimated for

both dataset with a value of 0.15m2.

3.0 – Modelling:

DATASET 16 HLC [W/°C]

Error [W/°C]
(HTC 95% Confidence 

Interval of the estimation 

method)

Aperture (A2) 

[m2]

Error

[m2]
Log-likelihood P value

Ti 3.80 ±0.48 0.11 ±0.04 -71.0

TiTe 4.10 ±0.11 0.15 ±0.01 -1.5 0 (Ti ->TiTe)

TiTeTh 13.70 ±27.90 3.40 ±1.00 -48.9 1 (TiTe ->TiTeTh)

TiTm 4.20 ±0.15 0.16 ±0.02 -9.2 0 (Ti ->Tm)

TiTmTh - - - - - - (TiTm ->TiTmTh)

DATASET 17 HLC [W/°C]

Error [W/°C]
(HTC 95% Confidence 

Interval of the estimation 

method)

Aperture (A2) 

[m2]

Error

[m2]
Log-likelihood P value

Ti 4.20 ±0.10 0.13 ±0.03 82.7

TiTe 4.20 ±0.09 0.15 ±0.03 101.9 9.7* 10-8 (Ti ->TiTe)

TiTeTh -0.01 ±0.03 0.01 ±0.08 76.5 1 (TiTe ->TiTeTh)

TiTm 4.30 ±0.12 0.16 ±0.04 93.4 2.8* 10-4 (Ti ->Tm)

TiTmTh 11.90 ±16.90 3.90 ±8.40 -76.3 1 (TiTm ->TiTmTh)
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4.0 – Conclusions

➢ The models are able to provide quite accurate responses although sometimes

they can be affected by the correlation of the input data.

➢ After the Likelihood Ratio Test it is assumed that TiTe is the best model for both

datasets. In this case, the obtained HLC for this model is 4.1 ± 0.11W/°C for

dataset 16 and 4.2 ± 0.09 W/°C for dataset 17.

➢ The TiTe model is showing good residuals. The ACF shows residuals close to

white noise without any periodical behaviour or considerable peak. Moreover, the

periodogram is defining quite accurately the dynamics of the box.

➢ If the aperture results are checked can be concluded that the results are exactly

the same for both datasets, 0.15m2.
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Thank you for your attention!

Irati Uriarte (irati.uriarte@ehu.eus)

(University of the Basque Country (UPV/EHU))

Further questions can be sent to Hans Bloem at: hans.bloem@inive.org
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