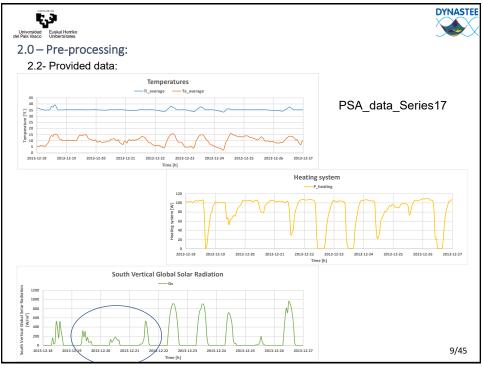
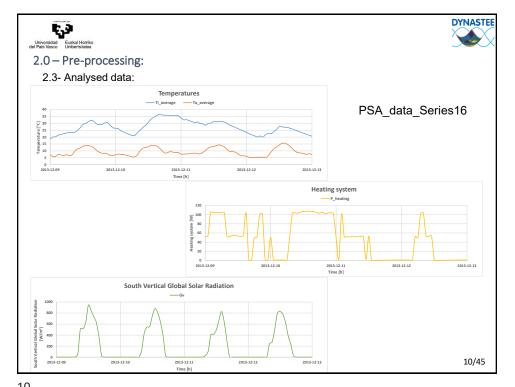
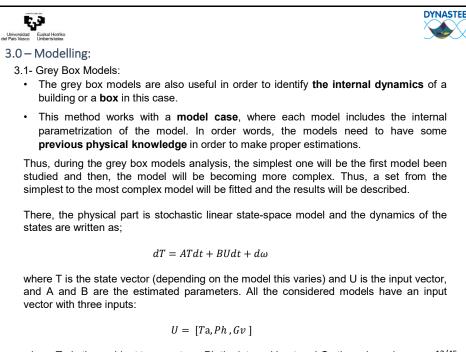
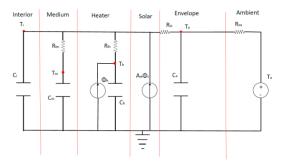

4/45



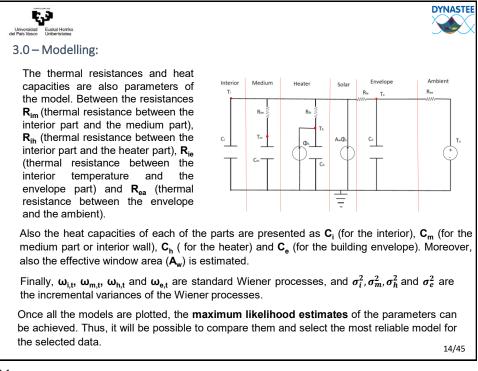

Universidad del País Vasco Universidad				DYNASTE
1.0 – Introduction	1			
1.2- Test location	and period			
The experim	nent has been carried out at	Plataforma Sol	ar de Almeria (PSA), Spain.
January of 2	period started the 6th of Dec 2014. s been developed under rea			of
1.3- Data acquisit	·			
•	sors were installed in order	to mogouro the	data offecting the h	<u></u>
	ed parameters are shown ir		Ū	0.
Temperature	Solar radiation	Humidity	Wind characteristics	Heating
4 air temperature sensors	1 vertical south, 1 vertical north and 1 horizontal global solar radiation sensor	1 relative humidity sensor	1 wind speed sensor	1 heat power sensor
14 surface temperatura sensors	1 beam solar radiation and 1 diffuse solar radiation sensor		1 wind direction sensor	6 heat flux sensors
8 average surface temperatura sensors	1 horizontal and 1 vertical long wave radiation sensor			
The data ha	s been read and recorded e	every minute in	the GMT timeframe	in three
datasets.				6/45



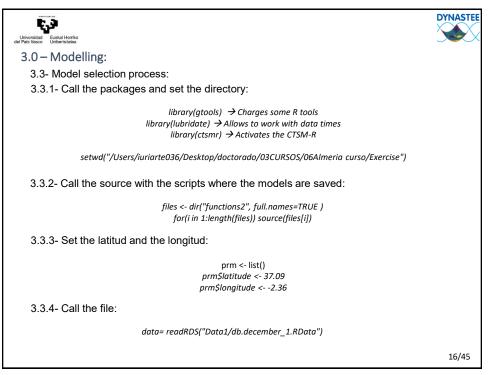

where Ta is the ambient temperatura, Ph the internal heat and Gv the solar gains.

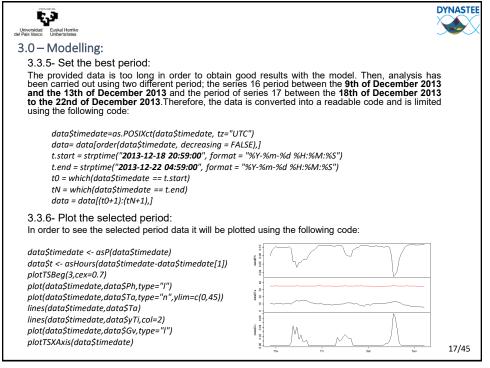
Universidad del País Vasco Unibertsitatea

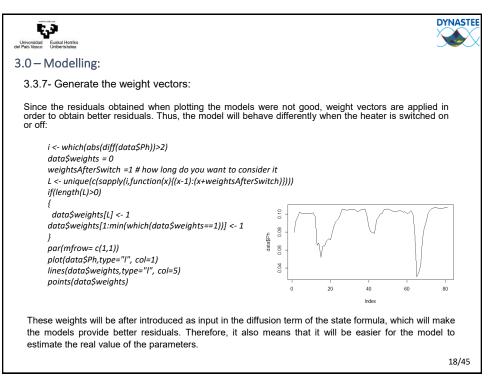
3.0 – Modelling:

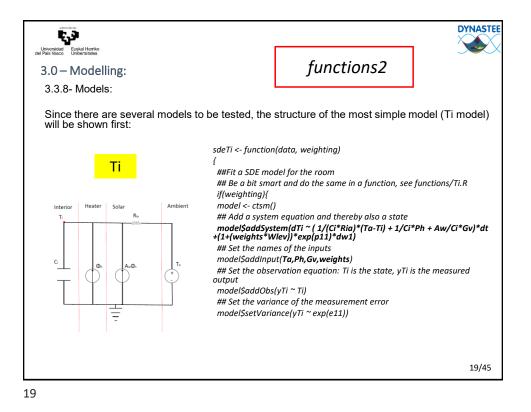

The figure shows the most complex model that could be find when working with grey box models:

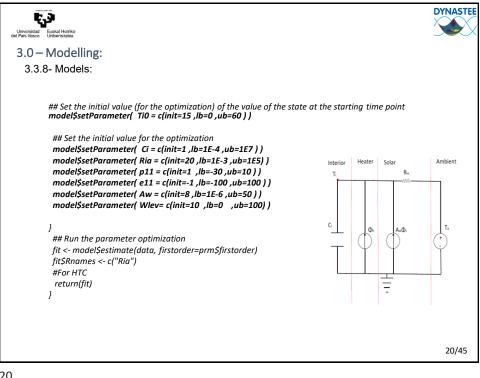
This model have six parts that will be combined in order to estimate the rest of the models. The parts are the interior, the medium, the heater, the solar radiation, the envelope and the ambient.

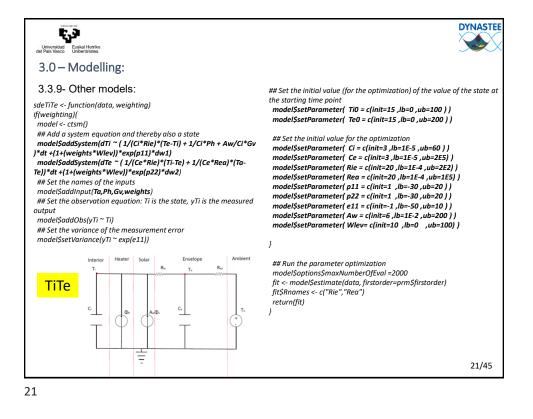

As seen, this model includes four state variables that represent the temperature in each part of the building; the interior temperature (T_i) , the medium temperature (T_m) , the heater temperature (T_h) and the building envelope temperature (T_e) .

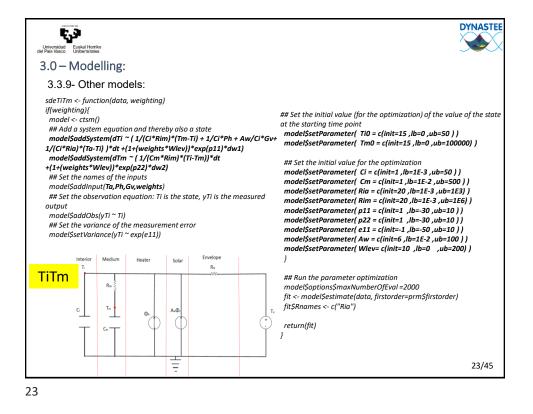

13/45

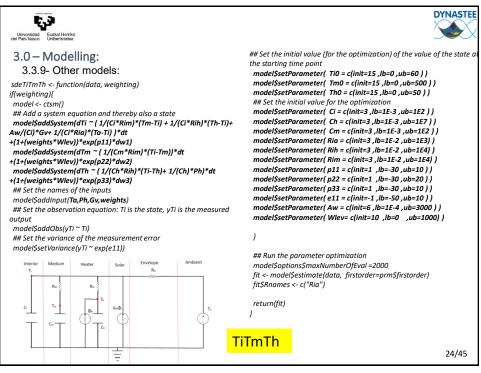

	DYNASTEE
Universidad Euskal Homiko del Pais Vasco Unibersitatea	
3.0 – Modelling:	
3.2- Data introduction:3.2.1- Call the packages and set the directory:	
library(gtools) → Charges some R tools library(lubridate) → Allows to work with data times library(ctsmr) → Activates the CTSM-R	
setwd("/Users/iuriarte036/Desktop/doctorado/03CURSOS/06Almeria curso/Exercise") 3.2.2- Call the data (CSV files):	
December16_1 <- read.csv("Data/Almeria16_1.csv",header=TRUE,sep=",",dec=".", skip=0,stringsAsl FALSE)	Factors =
3.2.3- Identify the data and modify:	
db.december16_1=data.frame(date=December16_1\$TimeDD.MM.AAAA.h.mm.,Ti1=December16_1 up,Ti2=December16_1\$Ti_down,Te1=December16_1\$Te_down,Te2=December16_1\$Te_middle,Gv= mber16_1\$Gv, Q=December16_1\$P_heating)	
In order to obtain the required data, the provided data is modified. Therefore, the internal hea converted from W into kW, the external and internal average temperatures are calculated	t is
3.2.4- Join the data in the same file and save it:	
db.december_1= rbind(db.december16_1, db.december17_1)	
<pre>saveRDS(db.december_1, file = paste0("Data1/db.december_1.RData"))</pre>	15/45

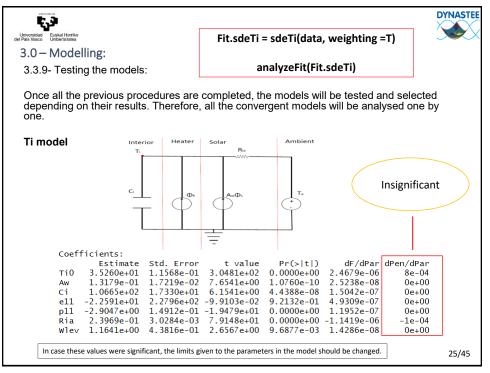


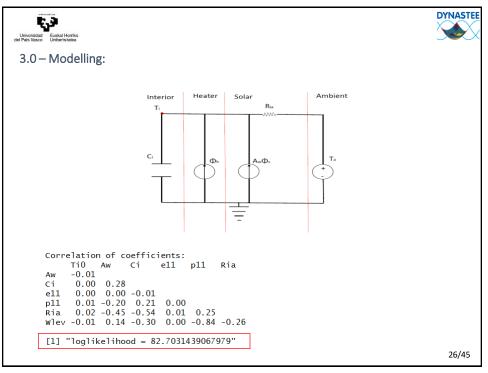


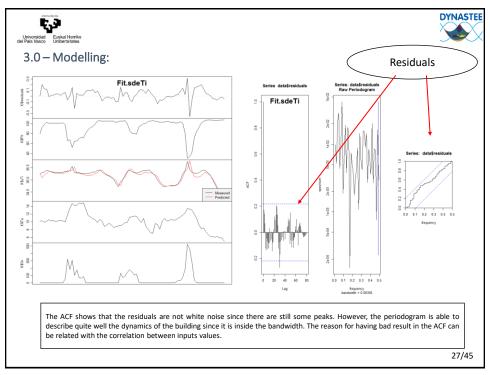


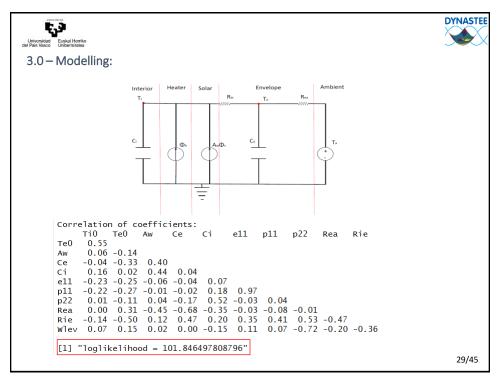


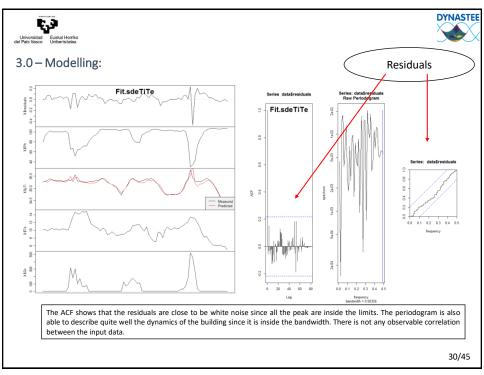


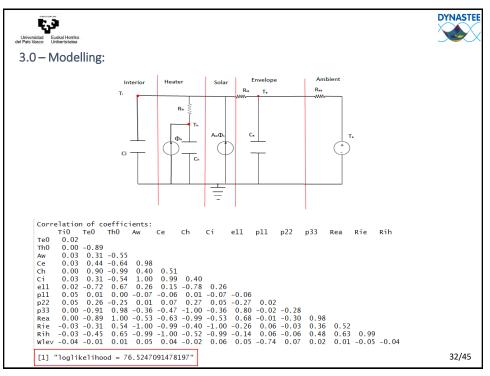


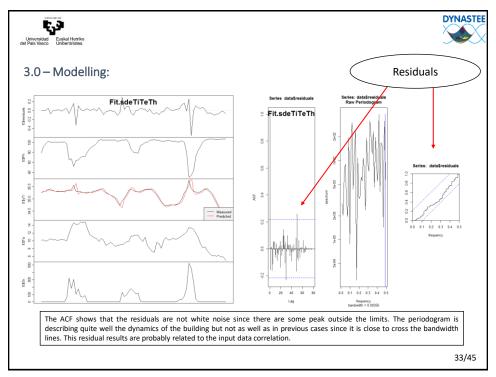


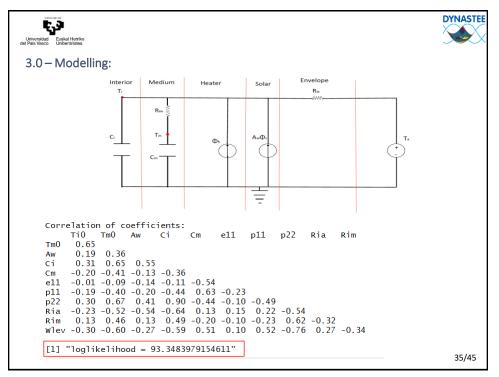

Universities de Pais Visiou 3.0 – Modelling:	DYNASTEE
3.3.9- Other models: sdeTiTeTh <- function(data, weighting) ij(weighting){ model <- ctsm() ## Add a system equation and thereby also a state modelSaddSystem(dTi ~ (1/(Ci*Rih)*(Th-Ti) + Aw/Ci*Gv+ 1/(Ci*Rie)*(Te- Ti))*dt +(1+(weights*Wlev))*exp[21]*dw2] modelSaddSystem(dTr ~ (1/(Ci*Rih)*(Ti-Te)+ 1/(Ce*Rie)*(Ti-Te))*dt +(1+(weights*Wlev))*exp[23]*dw3) ## Set the names of the inputs modelSaddSystem(atta ~ (1/(Ci*Rih)*(Ti-Th)+ 1/Ch*Ph)*dt +(1+(weights*Wlev))*exp[23]*dw3) ## Set the nomes of the inputs modelSaddDSyt0* ~ Ti) ## Set the variance of the measurement error modelSaddDSyt0* ~ Ti) ## Set the variance of the measurement error modelSadVariance(yTi ~ exp[e11))	<pre>## Set the initial value (for the optimization) of the value of the state at the storting time point modelSsetParameter(Ti0 = c(init=25, lb=0, ub=70)) modelSsetParameter(To0 = c(init=25, lb=0, ub=70)) ## Set the initial value for the optimization modelSsetParameter(Ci = c(init=10, lb=1E-2, ub=1E6)) modelSsetParameter(Ci = c(init=10, lb=1E-2, ub=1E6)) modelSsetParameter(Ci = c(init=1, lb=1E-2, ub=1E6)) modelSsetParameter(Ri = c(init=1, lb=1E-6, ub=100)) modelSsetParameter(Ri = c(init=1, lb=1E-6, ub=100)) modelSsetParameter(Rin = c(init=1, lb=30, ub=30)) modelSsetParameter(Rin = c(init=1, lb=30, ub=30)) modelSsetParameter(Rin = c(init=1, lb=2-5, ub=30)) modelSsetParameter(Rin = c(init=1, lb=2-6, ub=30)) modelSsetParameter(Rin = c(init=1, lb=2, ub=30)) modelSsetParameter(</pre>
	22/45



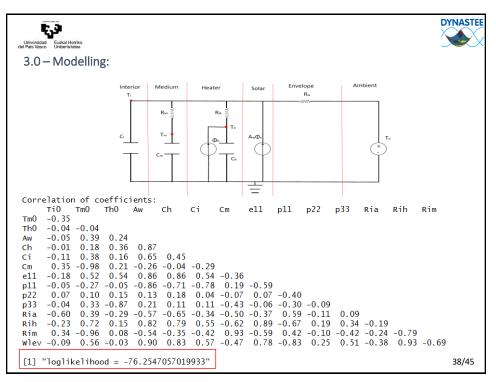


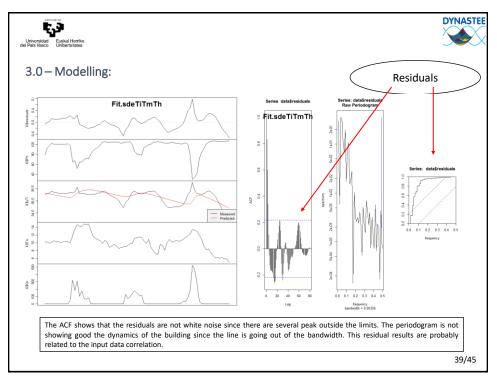


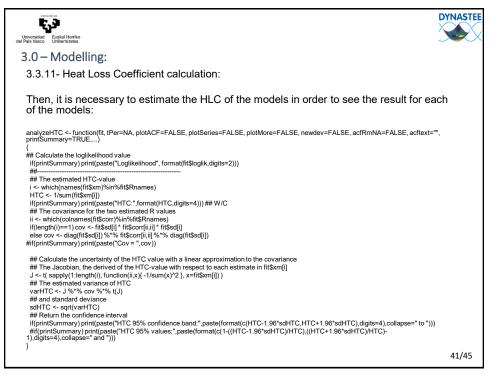

Universidad Euskal Herriko Diskal deriko		DYNAST
3.0 – Modelling:		
•		
TiTe model		
	Interior Heater Solar Envelope Ambient	
	$ \begin{array}{c c} c \\ \hline \\$	int
Coefficients:		
COETTICIENTS: Estimate	Std. Error t value Pr(> t) dF/dPar dPen/dPar]
Ti0 3.5262e+01	7.5523e-02 4.6691e+02 0.0000e+00 7.8677e+00 8e-04	
Te0 3.4275e+01	1.8257e-01 1.8773e+02 0.0000e+00 1.4594e+00 7e-04	
Aw 1.5467e-01	1.2680e-02 1.2198e+01 0.0000e+00 1.2040e-01 0e+00	
Ce 8.4925e+01	1.3008e+01 6.5285e+00 1.2323e-08 2.2753e-02 0e+00	
Ci 1.8436e+01	5.3480e+00 3.4472e+00 9.7461e-04 -1.0109e-01 0e+00	
e11 -2.2477e+01	7.3172e+00 -3.0718e+00 3.0506e-03 7.6041e-05 1e-04	
p11 -5.6848e+00	3.1326e+00 -1.8147e+00 7.3885e-02 -1.8879e-01 0e+00	
p22 -2.9311e+00	1.7085e-01 -1.7156e+01 0.0000e+00 -1.2669e-01 0e+00	
Rea 2.2424e-01	2.4874e-03 9.0149e+01 0.0000e+00 -2.3862e+00 0e+00	
Rie 1.3619e-02	6.5928e-04 2.0658e+01 0.0000e+00 -4.9033e-01 -1e-03	
Wlev 1.5564e+00	4.8869e-01 3.1849e+00 2.1806e-03 -4.4863e-02 0e+00	
		28/45

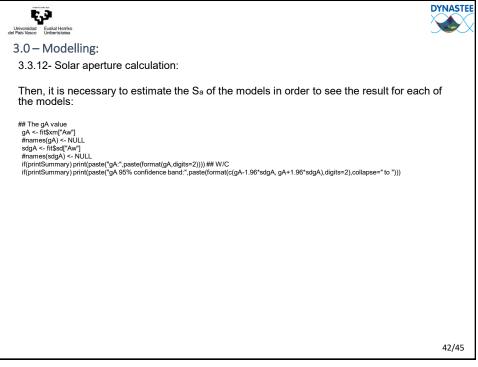


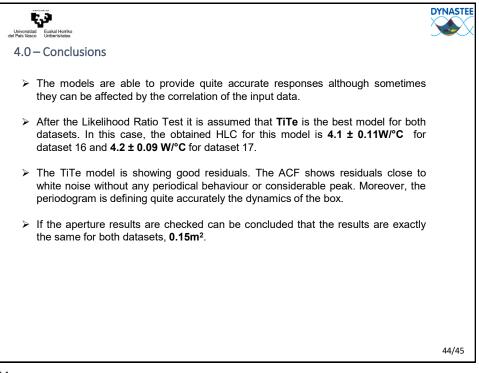
Universitate del Park Vanco Universitate	DYNASTEE
3.0 – Modelling:	
TiTeTh model	
Interior Heater Solar Envelope Ambient	
Ti Rie Te Rea	
	Insignificant
Coefficients:	
Estimate Std. Error t value Pr(> t) dF/dPar	dPen/dPar
Ti0 3.5260e+01 7.2331e-02 4.8748e+02 0.0000e+00 3.6820e-02	8e-04
Te0 3.7443e+01 7.9430e+00 4.7139e+00 1.3963e-05 -1.8965e-02	2e-04
Th0 3.1956e-02 3.2344e+00 9.8802e-03 9.9215e-01 -5.0585e-06	0e+00
Aw 1.9802e-03 4.5562e-02 4.3463e-02 9.6546e-01 -2.1543e-04	0e+00
Ce 5.3317e+02 1.3256e+04 4.0220e-02 9.6804e-01 5.1460e-05	2e-04
ch 1.6902e+08 2.5593e+10 6.6042e-03 9.9475e-01 2.4360e-05	0e+00
Ci 1.0934e+01 2.5105e+02 4.3552e-02 9.6539e-01 3.5184e-04	0e+00
el1 -4.8379e+01 4.4121e+02 -1.0965e-01 9.1302e-01 -1.9651e-05	0e+00
p11 -3.0748e+00 2.1089e-01 -1.4581e+01 0.0000e+00 -1.8052e-04	0e+00
p22 -1.6041e+00 4.3231e-01 -3.7104e+00 4.3571e-04 7.1915e-04	0e+00
p33 -1.5175e+01 1.3730e+02 -1.1052e-01 9.1233e-01 7.3950e-05	1e-04 0e+00
Rea -1.1949e+03 2.1712e+04 -5.5033e-02 9.5628e-01 -2.2972e-04 Rie 3.1820e-01 7.3062e+00 4.3553e-02 9.6539e-01 9.4003e-04	0e+00 0e+00
Rife $3.1820e-01$ / $3062e+00$ 4.3553e-02 9.6539e-01 9.4003e-04 Rife $5.5056e+00$ 1.3296e+02 4.1408e-02 9.6710e-01 -9.2140e-04	0e+00 0e+00
Wlev 4.9682e-01 3.1439e-01 1.5803e+00 1.1886e-01 -5.1222e-05	0e+00 31/45
#100 1.50020 01 5.14550 01 1.50050400 1.10000-01 -5.12220-05	000 , -

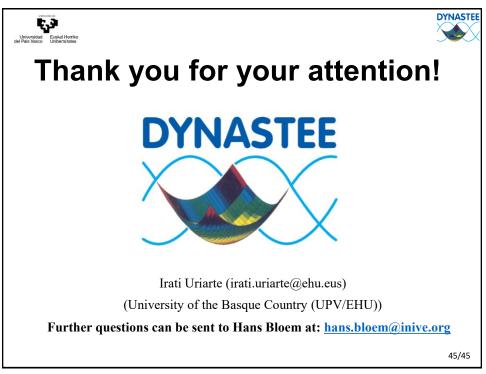



Universida del País Vasco Unibertstatas	DYNASTEE
3.0 – Modelling:	
TiTm model	
Interior Ti	Medium Heater Solar Envelope Ra
	Rm
C.	T _n
Coefficients:	
Estimate Ti0 3.5260e+01	Std. Error t value Pr(> t) dF/dPar dPen/dPar 9.2128e-02 3.8273e+02 0.0000e+00 -1.0957e-04 3e-04
TmO $3.5683e+01$	2.8510e-01 1.2516e+02 0.0000e+00 1.7427e-05 4e-04
Aw 1.5969e-01	1.9136e-02 8.3449e+00 1.0885e-11 2.5554e-06 0e+00
Ci 3.3927e+01	1.5733e+01 2.1565e+00 3.4520e-02 7.7047e-07 7e-04
Cm 9.1547e+01	3.8905e+00 2.3531e+01 0.0000e+00 -1.9010e-04 2e-04
el1 -1.9500e+01	4.4893e+00 -4.3436e+00 4.8475e-05 -1.4712e-07 5e-04
p11 -9.5177e+00	2.6744e+00 -3.5588e+00 6.8431e-04 1.4313e-06 1e-04
p22 -2.5819e+00 Ria 2.3542e-01	2.9129e-01 -8.8636e+00 1.5761e-12 -2.6797e-06 0e+00 3.4365e-03 6.8505e+01 0.0000e+00 2.0106e-05 0e+00
Ria 2.3542e-01 Rim 1.2396e-02	3.2643e-03 $3.7976e+00$ $3.1464e-04$ $2.2678e-06$ $0e+00$
Wlev 1.3220e+00	4.0267e-01 3.2830e+00 1.6205e-03 6.3277e-06 0e+00
	34/45




Utvorstad Jahren varste 3.0 – Modelling:	DYNASTEE
TiTmTh model	
Interior Medium Heater Solar Envelope Ambient	
Ti Ru	
	Insignificant
$T \stackrel{\alpha}{=} T \stackrel{\alpha}{=} T$	
Coefficients:	· · ·
	dPen/dPar
Ti0 3.5321e+01 2.5243e-01 1.3992e+02 0.0000e+00 1.1039e+01	8e-04
Tm0 2.5174e+00 4.0628e+00 6.1962e-01 5.3765e-01 -6.9043e-03	0e+00
Th0 6.3100e+00 8.0052e+00 7.8824e-01 4.3339e-01 3.3708e-05	0e+00
Aw 3.9056e+00 4.2679e+00 9.1511e-01 3.6347e-01 1.6810e-01 Ch 3.9275e-02 7.5852e-02 5.1779e-01 6.0634e-01 4.8761e-01	1e-04
	0e+00
	0e+00 0e+00
Cm 8.2556e+01 2.5264e+02 3.2677e-01 7.4488e-01 -2.9544e-01 e11 1.9715e-06 3.8235e-05 5.1562e-02 9.5903e-01 7.0628e-05	0e+00 0e+00
pl1 -6.0928e+00 4.1177e+00 -1.4797e+00 1.4375e-01 -1.1527e-01	0e+00 0e+00
p11 -0.0928e+00 4.117/e+00 -1.4797e+00 1.4575e-01 -1.1527e-01 p22 -3.6713e+00 1.9566e+01 -1.8763e-01 8.5174e-01 -4.7494e-03	0e+00 0e+00
p33 3.4119e+00 1.9849e+01 1.7189e-01 8.6405e-01 1.9731e-03	0e+00 0e+00
Ria 8.3852e-02 6.0412e-02 1.3880e+00 1.6983e-01 3.5357e-01	0e+00 0e+00
Rih = -7.1714e+02 = 1.4243e+03 = 5.0352e-01 = 6.1628e-01 = 4.8700e-01	0e+00
Rim -3.6586e-01 4.3759e-01 -8.3608e-01 4.0613e-01 -5.0459e-01	0e+00
Wlev 1.3695e-01 5.8802e-01 2.3290e-01 8.1656e-01 1.8303e-03	00:00
	37/45


Univers		n						DYNASTE
del País V	asco Unibertsitates							
3. Oi m	3.10- Eva nce all th	aluating and ne models h		nd th			d, it is indispensabl Likelihood Ratio Te	
	DATASET 16	Log-likelihood	p-value (LRT)		DATASET 17	Log-likelihood	p-value (LRT)	
	Ti	-71.0			Ti	82.7		
	TiTe	-1.5	0 (Ti ->TiTe)		TiTe	101.9	9.7* 10 ⁻⁸ (Ti ->TiTe)	
	TiTeTh	-48.9	1 (TiTe ->TiTeTh)		TiTeTh	76.5	1 (TiTe ->TiTeTh)	
	TiTm	-9.2	0 (Ti ->Tm)		TiTm	93.4	2.8* 10 ⁻⁴ (Ti ->Tm)	
	TiTmTh	-	- (TiTm ->TiTmTh)		TiTmTh	-76.3	1 (TiTm ->TiTmTh)	
th to	e logarith model E	nm of the lik 3 the quanti	elihood function for ty D is χ^2 (k - m) and B, respectively	mo dist /.	as D = 2 del A. Giv ributed, v A - log LE	ven that the vhere k and	og LB), where log L model can be redu mare the numbe	A is iced ir of
				- 4 ((k-m)	,		40/45



iversidad is Vasco Uniber	Horriko statea					DYNAS
3.0 – M	odelling:					
		or all the models,	the followin	a result	s will be ach	ieved:
DATASE		Error [W/°C] (HTC 95% Confidence Interval of the estimation method)	Aperture (A2) [m ²]	Error [m ²]	Log-likelihood	P value
Ti	3.80	±0.48	0.11	±0.04	-71.0	
TiTe	4.10	±0.11	0.15	±0.01	-1.5	0 (Ti ->TiTe)
TiTeTh	13.70	±27.90	3.40	±1.00	-48.9	1 (TiTe ->TiTeTh)
TiTm	4.20	±0.15	0.16	±0.02	-9.2	0 (Ti ->Tm)
TiTmTi		-	-	-	-	- (TiTm ->TiTmTh)
DATASE	17 HLC [W/°C]	Error [W/°C] (HTC 95% Confidence Interval of the estimation method)	Aperture (A2) [m²]	Error [m²]	Log-likelihood	P value
Ti	4.20	±0.10	0.13	±0.03	82.7	
TiTe	4.20	±0.09	0.15	±0.03	101.9	9.7* 10 ⁻⁸ (Ti ->TiTe)
TiTeTh	-0.01	±0.03	0.01	±0.08	76.5	1 (TiTe ->TiTeTh)
TiTm	4.30	±0.12	0.16	±0.04	93.4	2.8* 10 ⁻⁴ (Ti ->Tm)
TiTmT	11.90	±16.90	3.90	±8.40	-76.3	1 (TiTm ->TiTmTh)

After the Likelihood Ratio Test we assumed that the obtained best model is the **TiTe** model for both cases. Therefore, it will be estimated as the best one for the provided data two datasets. In this case, the obtained HLC values for dataset 16 is **4.1W/°C** and for dataset 17, **4.2W/°C**. Moreover, the same solar apertura value has been estimated for both dataset with a value of **0.15m**².

