

Scope and Goals

Provide a framework for energy efficiency of the IAQ management strategies in operation and to improve their acceptability, control, installation quality and longterm reliability.

Residential buildings

- new and refurbished

- <u>Metrics</u> to assess energy performance and indoor environmental quality of an IAQ management strategy
- Improve <u>acceptability</u>, <u>control</u>, <u>installation quality</u> and long-term <u>reliability</u> of IAQ management strategies
- Coherent <u>rating method</u> for IAQ management strategy that takes into account the selected metrics
- <u>Tools to assist</u> designers and managers of buildings in <u>assessing the</u> <u>performance</u> of an IAQ management strategy
- Gather standardized input data for the rating method
- Study use of <u>smart materials</u> as part of an IAQ management strategy
- Develop IAQ management solutions for <u>retrofitting</u> existing buildings
- Benefit from <u>advances</u> in <u>sensor technology</u> and <u>cloud-based data</u> <u>storage</u> to improve quality of IAQ management strategies & operation
- Improve <u>availability of data sources</u> by exploring use cases
- Disseminate about above findings

EBC 🜆)	
nergy in Buildings and ommunities Programme	
Partne	ers
41 institutes from	24 countries
List of annex pa Australia: Austria: Belgium: Brazil: Canada: Chile: China: Denmark: Finland: France: Germany: Ireland: Italy: New Zealand: Netherlands: Norway: Portugal: Singapore: Spain: Switzerland: Turkey: United Kingdom: USA:	rticipants per country: CSIRO University of Innsbruck UGent, KUL, BBRI, University of Antwerp Pontifical Catholic University of Paraná NRC PUC Nanjing University, BUCE, Tsinghua University DTU, Aalborg University Copenhagen Aalto University La Rochelle University, ENS PSL, CEREMA, Université de Lille, UPJV, CETIAT TH Rosenheim NUIG EURAC research centre BRANZ Technical University of Eindhoven, BBA/TUDelft, Zehnder Oslo Metropolitan University, SINTEFF University of Coimbra, Polytechnic Institute of Viseu, University of Porto National University, KTH ETH TTMD University of Strathclyde, Lancaster University, University of Nottingham Svracuse Iniversity LIMD LBL

	Energy IEa Network
Age	enda – 23 November 2021
16:00	Introduction IEA-EBC Annex 86 and dissemination activities Carsten Rode, Leader of ST6, IEA EBC Annex 86 – DTU, Denmark
16:05	Introduction IEA-EBC Annex 86 ST4-smart ventilation Gaëlle Guyot, Leader of ST4, IEA EBC Annex 86 – Cerema, France
16:10	Investigation of natural ventilation control with regard to indoor and outdoor environments: First results Evangelos BELIAS – EPFL, Switzerland
16:30	Implementation of a MPC for an all-air system in an educational building Bart Merema, KU Leuven – Belgium
16:50	Draft for a health related performance assessment framework for smart ventilation Klaas De Jonge – UGent, Belgium
17:10	<i>Residential Applications of Smart Ventilation Controls</i> Iain Walker – LBNL, USA
17:30	<i>Questions and Answers</i> Jakub Kolarik, Co-Leader of ST4, IEA EBC Annex 86 – DTU, Denmark
17:45	Closing & End of webinar

IFA-FBC Annex 86 ST4 Ensuring performance of smart ventilation

- A4.1 Rating existing smart ventilation strategies
- A4.2 Quality control of implementation
- A4.3 Durability of smart ventilation systems and components
- A4.4 Occupant interaction

Air Infiltration and Ventilation Centre

Ecole

polytechnique fédérale

de Lausanne

Investigation of natural ventilation control with regard to indoor and outdoor environments: First results

Evangelos BELIAS

PhD candidate

23 November 2021

Webinar – Emerging smart ventilation strategies for energy efficient IAQ management

Outdoor air - IAQ

 Outdoor particulate matter is listed as one of the top risk factors for human health

Source: Gakidou et al. (2017)

- People spend ~90% of their time indoors Source: Klepeis et al. (2001)
- It is estimated that 80% of humans' exposure to outdoor pollution takes place indoors Source: Nazaroff (2018)

Air tightness + heat waves:

 Overheating phenomena in energy-efficient buildings, which occur not only during the summer but also during the transition periods

> Sources: Mlakar and Štrancar (2011), Psomas et al. (2016)

Evangelos BELIAS

EPFL

Figure source: COOLING POST

Existing studies

 Tradeoffs between overheating and PM_{2.5} exposure in London

(Taylor et al., 2014-15)

 Effect of outdoor PM_{2.5} on NV applicability of office buildings in Europe & Asia (Martins and Carrilho da Graça, 2017-18 & Song et al., 2021)

 Effect of PM_{2.5}, PM₁₀ & O₃ on NV applicability of office buildings in USA (Chen et al., 2019-20)

Knowledge gaps

- Only the effect of outdoor PM_{2.5} on NV potential is mapped for Europe
- No distinction between traffic and background buildings
- No consideration of residential non-air conditioned buildings (beyond London)

Objectives

- To quantify the outdoor air pollution penetration indoors when different NV scenarios are applied
- To investigate the tradeoffs between air pollution penetration and increased overheating
- To examine if the proximity to traffic plays a critical role in the indoor pollution levels

Evangelos BELIAS

EPFL

Results: IAQ compliance

• WHO air quality guidelines 2005:

All models in all locations in compliance

• WHO air quality guidelines 2021:

	Mod	el 1	Mod	el 2	Mod	lel 3	Mod	lel 4
	Background	Traffic	Background	Traffic	Background	Traffic	Background	Traffic
Annual mean	6.96	10.02	3.76	5.21	4.65	6.59	4.18	5.64
24-h exceedance	0	1	0	0	0	0	0	0
8h mean naximum ex	0	0	0	0	0	0	0	0
8h mean eak season	<60	<60	<60	<60	<60	<60	<60	<60
Annual mean	11.86	25.88	6.21	14.66	8.01	18.26	7.74	15.31
24-h exceedance	16	203	0	49	1	66	1	10
	Annual mean 24-h xceedance 8h mean aximum ex 8h mean eak season Annual mean 24-h xceedance	Annual mean6.9624-h xceedance08h mean taximum ex eak season0Annual mean 24-h xceedance<60Annual mean 24-h xceedance11.86	Infocter 1BackgroundTrafficAnnual mean6.9610.0224-h xceedance018h mean back season00Annual mean<60<60Annual mean 24-h xceedance11.8625.8824-h xceedance16203	Annual mean 24-h xceedance6.9610.023.763h mean aximum ex eak season010Annual mean aximum ex eak season000Annual mean eak season<60<60<60Annual mean 24-h xceedance11.8625.886.21Annual mean 24-h xceedance162030	Annual mean 6.96 10.02 3.76 5.21 24-h xceedance 0 1 0 0 8h mean aximum ex 0 0 0 0 8h mean aximum ex 660 <60 <60 <60 Annual mean aximum ex 11.86 25.88 6.21 14.66 24-h xceedance 16 203 0 49	Annual mean 6.96 10.02 3.76 5.21 4.65 24-h xceedance 0 1 0 0 0 8h mean aximum ex 0 0 0 0 0 Annual mean 24-h xceedance 1 0 0 0 0 8h mean aximum ex 0 0 0 0 0 0 Annual mean 24-h xceedance 11.86 25.88 6.21 14.66 8.01 Annual mean 24-h xceedance 16 203 0 49 1	Annual mean Control Contro Contro Control	Annual mean O <th< th=""></th<>

EPFL ୍	Conclusio	DNS		26 Seeriys 8 Berrys
The D the pe ou po	OCV reduces enetration of otdoor air ollutants		The proximity to traffic influences significantly the IAQ	Evangelo
/ - IEA EBC Annex 86		Reducing outdoor air pollution penetration increases overheating		With the new WHO air quality guidelines, NO ₂ becomes critical
WEBINAR AICV				Merci. Questions?

Acknowledgements

EPFL

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754354, and from EPFL

KU LEUVEN

MPC framework for all-air systems in non-residential buildings

Numerical and experimental study

Bart Merema

Supervisors: Dirk Saelens Hilde Breesch

1

AIVC webinar

<section-header><section-header>

 Table of contents

 Introduction
 Energy use Alair system control Objectives

 Methodology
 MPC framework

 Results
 MPC inplementation and demonstration Energy savings

 Conclusions
 State Savings

Introd	luction Me	ethodolog	ay 🔪	Re	sults	Coi	nclusion	IS	
• De	sign of experin	nents: Fe	eb-Ma	y 2020) and S	ep-Dec 2	2020		
		Hori	izon	Мс	odel	Times	step	Occupancy based	
		2 h	4 h	RC	ARX	15 min	5 min		
	Scenario 1	Х		Х		Х		-	
	Scenario 2	х			х	х		-	
	Scenario 3	х		Х		х		X	
	Scenario 4	х			Х	х		x	
	Scenario 5		Х	Х		х		х	
	Scenario 6		Х		Х	х		х	
	Scenario 7	х		Х			Х	Х	
	Scenario 8	Х			Х		Х	х	

Introduction	Methodology	Results	Conclusio	ons
	Thermal disc	comfort [Kh]	CO2-discon	nfort [ppmh]
	RBC	MPC	RBC	МРС
Scenario 1 (RC- MPC)	11.9	6.81	1535	1607
Scenario 4 (ARX-MPC)	11.0	5.78	1460	1617
Scenario 3 (RC-MPC)	1.31	0.24	706	764
Scenario 7 (RC-MPC)	1.98	0.13	502	79
6			Ghe	nt Technology Campus Faculty of Engineering Technology

Draft for a Health-related Performance

Assessment Framework for Smart Ventilation

Ir.-Arch. Klaas De Jonge, Janneke Ghijsels

Prof. Dr. Ir.-Arch. Jelle Lavergo

How to assess, score and check the performance?

Which pollutants? Which sources?

How to assess, score and check the performance?

Key principles

Occupant-centric

• Exposure concentration (not room concentration)

Double check

- 1. Pass or fail: absolute limits
 - Maximum exposure concentration
 - Maximum (yearly) intake
 - Life-time average daily dose (HQ, LCR)
 - Better then reference systems

2. Scoring

- Metrics that allow relative rating
- Energy-use
- Disability adjusted life-years (DALY)

Applicable at different data resolutions

Which pollutants? Which sources?

Proposed method

- 1. Measurement campaign
- 2. Identify pollutants of interest
 - Filter based on occurrence, concentration level and health impact
- 3. Identify sources
 - Occupants
 - Occupant activities
 - Building furniture

Minimum performance

Relative performance

Minimum performance metrics: occupant specific

Relative performance metric

Disability Adjusted Life Year (DALY)

- Metric of harm
- Sum-able
- Based on Logue et al. (2011)
- ID & IND method

Healthy life Disease or Disability Expected

Planemad CC BY-SA 3.0

2.

Formaldehyde Benzene Limonene Naphtanlene Toluene PM2.5 NO2 Ozone

IN FACULTY OF ENGINEERING

Klaas De Jonge (Ir. Arch)

klaas.dejonge@ugent.be

Ghent University – Building Physics research group FWO – Flanders Research Foundation (1SA7619N)

Why are we ventilating?

Odour – Health - Moisture

- 1. Contaminants from the building:
- Formaldehyde is the classic example

 but many other VOCs
- 2. Contaminants from human activities:
- Bioeffluents
- Health-related: e.g., particles from cooking or water vapour and cleaning chemicals from cleaning/bathing

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION

These are not all reduced equally by different smart ventilation systems and strategies

Residential Smart Controls

AIVC VIP 38 "What is Smart Ventilation" Definition includes controls based on:

- Weather
- Occupancy
- Contaminant sensing
- Energy supply signals

Today's discussion: assessing applications of smart ventilation controls through simulations:

combined CONTAM/EnergyPlus – full year, 5 minute timestep – range of climates, envelope leakage etc.

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION

3

Control Strategies

- Weather (outdoor temperature) controls
 - Pre-calculated temperatures to give the same annual exposure
 - Real time exposure calculations + temperature cutoffs
- Occupancy Controls
 - Reduce ventilation when unoccupied
- Zonal controls
 - Tracking relative exposure and dose in each zone during occupied periods
 - · Flow directed to occupied zones
- Contaminant controls
 - Whole dwelling vented if any contaminant is above its threshold
 - · Zone vented if it is above threshold
 - Zone vented if it is above threshold AND occupied

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION

Occupancy Control

- Assuming actual occupancy NOT using CO₂ or RH as a surrogate
- Include non-occupant generated contaminants:
 - E.g., Formaldehyde and other building-related VOCs or Radon

BUT.. increased contaminant concentrations for at least one contaminant:

- diversity of sources: continuous vs. periodic vs. outdoors
- diversity of removal mechanisms: outside air ventilation, deposition, filtration

People move from zone to zone – same problem as occupancy with contaminant build-up

Zoning

- Zone control:
 - reduces IAQ when point-source contaminant emissions (e.g., cooking, breathing, bathing) were aligned with the location of the single-point fan
 - improves IAQ when contaminant sources (e.g., CO₂ in bedrooms with closed doors) are NOT aligned with the location of the single-point fan
 - improves IAQ when unzoned systems do not evenly serve the dwelling. E.g., two-story dwellings, where first and second levels are ventilated at substantially different rates by unzoned supply and exhaust

Background papers from LBNL

Walker, I. Less, B. Lorenzetti, D. Sohn, M. (2021). Development of Advanced Smart Ventilation Controls for Residential Applications. Energies 2021, 14, 5257. https://doi.org/10.3390/en14175257

Young, M., Less, B.D., Dutton, S.M., Walker, I.S., Sherman, M.H. and Clark, J.D. (2020). Assessment of peak power demand reduction available via modulation of building ventilation systems. Energy and Buildings. <u>10.1016/j.enbuild.2020.109867</u>

Less, B.D., Dutton, S., Walker, I, Sherman, M. and Clark, J. (2019) Energy savings with outdoor temperature-based smart ventilation control strategies in advanced California homes. Energy and Buildings. 194 (2019) 317 - 327. https://doi.org/10.1016/i.enbuild.2019.04.028. LBNL 2001207

Clark, J., Less, B., Dutton, S., Walker, I. and Sherman, M. (2019). Efficacy of occupancy-based smart ventilation control strategies in energy-efficient homes in the United States. Building and Environment, Vol. 156, https://doi.org/10.1016/i.buildenv.2019.03.002. LBNL 201199

Guyot, G., Sherman, M.H. and Walker, I.S. (2018). Smart ventilation energy and indoor air quality performance in residential buildings: a review. Energy and Buildings. Vol. 163, pp. 416-430. <u>https://doi.org/10.1016/j.enbuild.2017.12.051</u>

Guyot, G., Sherman, M.H. and Walker, I.S. (2018). Performance based approaches for smart ventilation in residential buildings. International Journal of Ventilation. Vol. 18, No. 2 https://doi.org/10.1080/14733315.2018.1435025

Turner, W.J.N., Walker, I.S. and Roux, J. (2015). Peak Load Reductions: Electric Load Shifting with Mechanical Pre-Cooling of Residential Buildings with Low Thermal Mass. Energy. DOI: 10.1016/j.energy.2015.02.011. LBNL-180912.

Less, B., Walker, I., Lorenzetti, D., Mills, E., Rapp, V., Dutton, S., Sohn, M., Li, X., Clark, J. and Sherman, M. 2020. Smart Ventilation for Advanced California Homes. LBNL-2001342. https://doi.org/10.2172/1635274

Less, B., Walker, I and Ticci, S. 2016. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid US Climates. LBNL-1007244. http://eta-publications.lbl.gov/sites/default/files/1007244.pdf

More zones does not necessarily mean more savings

33

Example zonal controllers

occupantVenter – All zones get a minimum flow rate when unoccupied. Additional airflow is distributed to occupied zones. There is no tracking of controller estimated exposure, dose or contaminants

occupantTracker – Flows directed to occupied zones. Total airflows are unchanged. It is possible for a single occupied zone to receive the full dwelling airflow rate.

occExposure – Zones are vented if any person in the zone has an integrated relative dose greater than 1, or if the zone relative exposure is greater than 1. Personal exposure in one zone can be compensated for by increased ventilation in another zone

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION

zoneASHQexposure – Zones are vented if the zone has an integrated relative dose greater than 1, or if the zone relative exposure is greater than 1. Controls the zone Generic contaminant concentration to be the same as the steady-state zone concentration that would occur at the uncontrolled annual ventilation rate

occASHQexposure – This is the same control strategy as occExposure, but instead of using controller estimates of relative exposure and dose, it controls the zone Generic contaminant concentration to be the same as the steadystate zone concentration that would occur at the uncontrolled annual ventilation rate