
Using Smart Meter Data to Assist in Energy 

Performance Measurement 

Todays session will cover the following:

• The need for measurement of energy in 

buildings (briefly)

• Smart meters, context, capabilities and limits

• Examples of Smart meter – energy 

performance work

• How do we get the data 

• Final closing remarks 

Dr Richard Fitton 

Reader in Energy 
Performance of Buildings 

Energy House Labs:
What we do and why….
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KEY ISSUES

• Energy consumption in the home and 

small commercial

• Changes to the energy system –

decarbonisation, decentralisation and 

digitisation

• Everything from insulation, to heating 

systems, controls, smart meters and 

electric vehicles

• Domestic energy is getting complicated

OLD MODEL

SIMPLE 

CONSUMER

GAS

ELECTRICITY

Simple model we were working to

3

4



NEW MODEL

ELECTRICITY

Emerging view of 
domestic energy

FACILITIES
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ENERGY HOUSE 2 

ENERGY HOUSE 2 
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PEOPLE

SCOPE

What do we do?

Research:
• Retrofit of fabric (insulation 

air tightness etc)
• Smart controls
• Electric Vehicle Charging
• Building performance 

methodologies 
• Large scale field trials

• Commercial testing of energy 
savings devices

Research:
• Ageing of insulation materials
• Recycled materials for use as 

insulation
• Insulation values of thatched 

properties

• Commercial testing of 
conductivity of insulation 
products

Research:

• Appliance 

disaggregation

• Smart meter/IOT 

linkage

• Data analytics 

with Field Trial 

team

• Innovative uses 

for SM data

• Commercial 
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Context 

Researchers and industry are quickly realising that the

worlds of energy and environmental modelling and the real

world often do not intersect. This has been shown in many

studies globally. This is known as the “Performance Gap”

(PG)
Country Sample size (N) Average

Performance

Gap

Country Sample size (N) Average

Performance

Gap

Reference

Canada 1 74% Canada 1 74% (Rouleau et al.,

2018)

Germany 3400 30% Germany 3400 30% (Galvin, 2014)

United Kingdom 25 50% United Kingdom 25 50% (Johnston et al.,

2015a)

Switzerland 50000 11% Switzerland 50000 11% (Cozza et al.,

2020)

France France

Italy 6 45% Italy 6 45% (Ballarini &

Corrado, 2009)

Context 

Performance gap can be found in either the 

positive or negative side of the modelled value.

• Many researchers have tried to state what may 

cause PG. 

• The PG is actually caused by a number of 

different reasons. 

• A typical reason could be the gap between a 

default value entered into an energy model that 

wasn’t included in the actual building 
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Context 

This can explain some issues, but as researchers 

we dig deeper:

• The way we model may not be perfect, but 

modelling should be accepted as a simplification 

of a building and not reality itself.

• Also many people will criticise a model after 

analysing results form a poorly measured 

/sensored measurement campaign, with 

consideration for uncertainty etc.

How can smart meters help?

Historically.  Some of the older members of the 

audience may remember these:
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How can smart meters help?

Historically.  

In 2021 should we be gluing sensors to the 

front of gas and electric meters?

Plus, they fall off, occupants remove them, they 

need comms adding, and that is all expensive, 

and can be inaccurate. 

So now we can do things a little “smarter” in 

some cases

How can smart meters help?

So what is a smart meter?

In 2021 should we be gluing sensors to the 

front of gas and electric meters?

Plus, they fall off, occupants remove them, they 

need comms adding, and that is all expensive, 

and can be inaccurate. 

So now we can do things a little “smarter” in 

some cases
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In 2021 should we be gluing sensors to the 

front of gas and electric meters?

Plus, they fall off, occupants remove them, they 

need comms adding, and that is all expensive, 

and can be inaccurate. 

So now we can do things a little “smarter” in 

some cases

What is a smart meter?
No definition! / No harmonisation/ No common data patterns/ No standard comms!

European Smart Meter Association however do advise that smart meters 

should have the following characteristics:

• Automatic processing, transfer, management and utilisation of metering 

data

• Automatic management of meters  

• 2 way data communication with meters 

• Provides meaningful and timely consumption information to the 

relevant actors and their systems, including the energy consumer 

• Supports services that improve the energy efficiency of the energy 

consumption and the energy system (generation, transmission, 

distribution and especially end use)

• Can be used on multiple utilities, such as water, gas and electric, 

generally one meter for each.
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What is a smart meter?

What is a smart meter?

There is also no harmonisation across the EU, either 

technically or even with regards to rollouts, although 

there is an aim:

It is an aim of the European Union (EU) to 

introduce smart meters across the union 

at a rapid rate with the aim of 72% 

coverage for electric and 40% for gas 

metering. 
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Rollout:

These figures are quite old but are the latest 

ones:

Rollout:

Electric
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Rollout:

Gas

What can they do:

Another non harmonised issue!

• Meter readings are taken over a range of 10 

seconds to 60 minutes for electricity.

• Gas is less usually around 30 minutes and 

the device is remote from a power supply and 

is battery powered 

• The key message is smart meters and the 

data offered is VERY country specific. 
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Can Smart Meters generate accurate energy 

ratings on their own, probably not!

Generally for energy efficiency works without 

going to detail, a source of inside and outside 

temperature is needed. 

• We can get smart meter data remotely so we 

need something similar 

• IOT is our friend here, smart thermostats, 

boilers with comms, heat meters etc. 

Smart Devices:

25

26



Smart Devices:
• Actual sales figures are difficult to come by as these are 

commercially sensitive, but the trend is clear:  Shin et al 

estimated that smart home technologies are currently present in 

7.5% of homes globally with an annual market of $44.2 million in 

2018 (Shin et al., 2018).

• The EU is a strong leader in this market place with a recent 

Berg Insight market research report claiming that at the end of 

2017 the EU had around 22.5 million smart homes or 9.9% of 

households with France, Germany and the UK leading the 

market (Berg, 2018). 

So if we presume that we can access the data 

(more of this later), then what can we do with 

that data:

A couple of high profile projects have recently 

worked with SM data, with well documented 

outputs.  These are the latest ones:
• Annex 71 (pan EU) 

https://bwk.kuleuven.be/bwf/projects/annex71

• SMETERS (UK only) https://www.gov.uk/guidance/smart-meter-

enabled-thermal-efficiency-ratings-smeter-innovation-

programme (data to be released October 2021)
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ANNEX 71 Final Meeting Youtube playlist 

contains many videos on this topic including, 

data collection, analysis, interpretation, policy 

implications and much more 

This has just been released here
https://www.youtube.com/watch?v=h8nt_pEx36M&list=PL26pymJl0

WS2e-GltP1eLa_bdcLOBVp0H&index=1

SMETER had an online workshop which is 

relevant to todays session.  This is worth a 

view.

https://www.youtube.com/watch?v=kpwJaVek4

Q0 
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The findings from these reports are interesting 

and state that this method of estimating energy 

perform well and have lots of scope for further 

work.

So how do we actually get this data?

This is highly country/ supplier specific.  But lots 

of suppliers will have an interface to the data 

using a cloud platform. 

This platform usually has an API:
(API= Application Programming Interface, allows two 

applications to talk to each other)

The Octopus has a number of possible data 

points 
• Octopus Energy provides a REST API for customers and partner 

organisations to interact with our platform. Amongst other things, it 

provides functionality for:

• Browsing energy products, tariffs and their charges.

• Retrieving details about a UK electricity meter-point.

• Browsing the half-hourly consumption of an electricity or gas meter.

• Determining the grid-supply-point (GSP) for a UK postcode.

• Creating a quote.

• Creating a account.
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We will present an example as follows:

Apologies for UK centric angle, but this 

should still help. 

Octopus Energy - (supplier)

Smart meter install - (Electric)

Data – energy consumption

Frequency - 30 mins

Domestic Installation

Thanks to Dr I Paraskevas and A Sitmalidis

for this presentation

Walkthrough
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Walkthrough

Sample JSON files can be received by emailing 

R.fitton@Salford.ac.uk

Space Heating Data

A key component  for any heat loss/ HTC 

estimation is the Delta component (Internal and 

external data)  

Some easy to use (and working systems) 
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Tado

https://www.openhab.org/addons/bindings/tado/

Honeywell Evohome

https://developer.honeywellhome.com/content/g

etting-started-guide
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Google Nest 

https://developers.google.com/nest/device-

access/api/thermostat

Air Source Heat Pumps

https://api.nibeuplink.com

SEE EXCEL 

SHEET
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No Energy rating estimation is possible without 

external conditions 

Weather compensation sensors

Weather observations API

Forecasted weather API 

BEMS Systems 

Data observation:

Of course data can have glitches, it can be 

correct or incorrect.  

You should use some relevant mechanisms to 

check your data makes sense. 

Just because something is smart does not 

make it right 

Data often drops/has gaps etc, so you need to 

deal with this also. 

Some excellent advice is found here https://iea-

ebc.org/projects/project?AnnexID=58
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How can you start doing this:

Smart meter data is now fairly easy to achieve, however it is totally 

unique to the country and supplier, you are going to have to have to 

do some research.

Please note :Data and GDPR, this needs a significant amount of 

thought, people’s life's are well documented through energy 

consumption and heating patterns and it should not be in the public 

domain. 

It should never be linked to personal data such as addresses, 

peoples names etc, where it can be used for nefarious purposes. 

What else can we do:

This is just the start of an energy data 

revolution, more data will come on stream, EV, 

ASHP, batteries, Heat meters etc. 

If we merge in other data sources we can 

extrapolate more sensing, if we know where the 

EV is we can map temp data etc.

Lets take a look, my journey home last night:
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WEBINARS 2020 
2-30 September

Dynamic Calculation Methods for Building Energy 

Performance Assessment

Technical

University of

Denmark

Network for

• DYNamic 

• Analysis

• Simulation and 

• Testing of 

• Energy and 

• Environmental 
performance of 
buildings

https://DYNASTEE.INFO website
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DYNASTEE - OBJECTIVE

• Global leading network on dynamic testing and 

evaluation of Energy Performance in Buildings

• Consolidation of existing knowledge

• Bringing together academic, industry and 

governmental experts

– on the test environment and experimental 

setup as well as on the data analysis and 

performance prediction. 

• DYNASTEE - NoE: ST5 of IEA EBC Annex 71

TRAINING OBJECTIVES

Background to Course

The course has two main objectives:

• Train a dynamic methodology to assess the thermal 

performance of a building such as a wall, and a whole 

buildings’ performance.

• Examine and understand the performance of nZEB and 

renewable energy technologies in built environment

The approach to these will be a combination of building 

physics, applied mathematics and statistical methods
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Overall Topic of Sessions

• Building physics to support the development of mathematical 

models for energy performance assessment. 

• Knowledge of thermodynamic processes, heat transfer and the 

impact of solar radiation. 

• Thermal conduction, convection, radiation and thermal mass. 

• Using benchmark data for analysis 

• Complexity of the physical process and how to translate the 

available information in mathematical models, 

• Importance of model simplification of building physics represented 

by measured signals. 

• Variability of the environments and the uncertainty of data 

• Measured data and not-measured phenomena and how to build a 

mathematical model based on the available input.

The Experts

• María José Jiménez (CIEMAT, Spain), 

• Irati Uriarte (UPV-EHU, Bilbao, Spain),

• Hans Bloem (INIVE-DYNASTEE, BE), 

• Paul Baker (GCU, Glasgow, UK),

• Aitor Erkoreka (UPV-EHU, Bilbao, Spain),

• Peder Bacher (DTU, Lyngby, Denmark), 

• Richard Fitton (University of Salford, UK),

• Luk Vandaele (INIVE-DYNASTEE, BE)
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PRESENTATIONS
General 

• Introduction to general approach of different analysis techniques used to 

perform the thermal characterisation for elements (walls, roofs etc) 

through to the whole building.  

• Two software tools have been introduced that could be used during series 

of webinars; LORD, and CTSM-R. An easy exercise is available given 

with the correct result that may help you to build confidence in your 

analytics skills

• Introduction to measured data, specific sensors for buildings physics and 

energy performance and what is important to know about building physics, 

sensors and instruments

• The experimental set up and measurements at the Plataforma Solar de 

Almeria (PSA)has been presented, an explanation and demonstration of 

the data available have been given. Data series 16-17 have been 

presented. 

PRESENTATIONS
Data that can be used be the participants is available at the website 

dynastee.info; zipped folder PSA_RRbox_DataSeries20

• An exercise that will allow of a study to be analysed with and without solar 

radiation. 

• An introduction to dynamic analysis methods specifically LORD has been 

will provided

• A practical demonstration has been given of the software tool LORD on the 

PSA data series 16 and 17

• Introduction to discrete time and continuous time methods and how to use 

CTSM-R with statistical tools .

• Demonstration of the CTSM-R software applied to PSA data series 16,17.

• An introduction to the analysis of metering data, the specification and 

limitations of the data and analysis techniques.
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CONCLUSION

“One needs a certain level of skill to 

perform well”

• Improve knowledge through a Training and 

Competition

• After >25 years DYNASTEE states: 

Training make sense

CONCLUSION

• These webinars have been attended by 26 people 

• Improve your knowledge and your skill through a 

Competition

• DYNASTEE investigates the organization of such a 

Dynamic Analysis Competition 

• Could be whole building energy performance 

assessment based on metering data and/or real 

measurements
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Future; 2022 
Last year is atypical; the decision was made to postpone the complete 

Summer School for good reasons and substitute it by a series of 

webinars

However we are already planning the next summer school to take place 

in Almeria in Spain in 2022, this will be a full Summer School with 

classroom-based learning sessions and interactive sessions. 

Future; 2022 and beyond 
We will be using the forthcoming year to work on new topics for the 

summer school as follows:

• Use of online data platforms such as weather API, renewable 

energy data

• Use of on-board systems such as connected thermostats

• Use of smart metering data for energy input

Most countries now have access to at least most of these data, and 

some, all of it.

• The work and findings of IEA Annex 71 which focus on the data 

mentioned above to deem the energy performance of a dwelling. 

https://dynastee.info/new-iea-ebc-annex-71-building-energy-

performance-assessment-based-on-in-situ-measurements/

• We will provide learning on not only the acquisition of this data 

using live API access to smart meter and controls, but the 

analytical tools to deem the energy performance. 
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THANKS TO

Valérie Leprince 

(INIVE, BE)

Maria Kapsalaki 

(INIVE, BE)

Webinar management

Disclaimer: The sole responsibility for the content of presentations and information given orally during DYNASTEE webinars lies with the authors. It does not necessarily reflect the opinion of 

DYNASTEE. Neither DYNASTEE nor the authors are responsible for any use that may be made of information contained therein.

WWW.DYNASTEE.INFO
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1/5

Introduction to measured data, 

instrumentation and sensors in 

relation to building physics and 

energy performance. 

What is important to know?

QUESTIONS 
Aitor Erkoreka

University of the Basque Country (UPV/EHU)

2/5

Considerations on temperature measurements: THERMORESISTANCE

1 – QUESTIONS
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1 – QUESTIONS

4/5

1 – QUESTIONS

3

4



5/5

1 – QUESTIONS
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Introduction to ctsm-r

(Based on slides created by Rune Juhl)

Peder Bacher

DTU Compute, Dynamical Systems
Building 303B, Room 010
DTU - Technical University of Denmark
2800 Lyngby – Denmark
e-mail: pbac@dtu.dk

Summer school 2021:

Time Series Analysis - with a focus on Modelling and Forecasting in Energy Systems
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Overview
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Parameter estimation with maximum likelihood

Population and sample

Randomly
selected

(Infinite) Statistical population

Sample mean
x̄

Mean
µ

Sample
{y1, y2, . . . , yn}

Statistical
Inference
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Parameter estimation with maximum likelihood

Parameter estimation with example

Simplest example: a constant model for the mean

Model

Yi = µ + εi , where εi ∼ N(0, σ2) and i.i.d.

i.i.d.: identically and independent distributed

The parameters are: the mean µ and the standard error σ

We take a sample of n = 10 observations

(y1, y2, . . . , y10)
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Parameter estimation with maximum likelihood

Likelihood

The likelihood is defined by the joint probability of the data

L(µ, σ) ≡ p(y1, y2, . . . , y10|µ, σ)

Hence, it’s a function of the two parameters (the sample is observed, so it is not varying).

Due to independence

=
10

∏
i=1

p(yi|µ, σ)

We assume in our model that the error εi = Yi − µ is normal distributed (Gaussian), so

p(yi|µ, σ) =
1

σ
√

2π
exp

(
− (yi − µ)2

2σ2

)
(1)
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Parameter estimation with maximum likelihood

Maximum likelihood estimation

Parameter estimation

θ̂ = arg min
θ∈Θ

(−ln(L(θ))

where θ = (µ, σ)

Run the example in R
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Parameter estimation with maximum likelihood

Maximum likelihood estimation

Parameter estimation

θ̂ = arg min
θ∈Θ

(−ln(L(θ))

where θ = (µ, σ)

Run the example in R
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Parameter estimation with maximum likelihood

Likelihood for time correlated data

Given a sequence of measurements YN

L(θ) = p(YN |θ) = p(yN , yN−1, . . . , y0|θ)

=

(
N

∏
k=1

p(yk|Yk−1, θ)

)
p(y0|θ)

Parameter estimation

θ̂ = arg min
θ∈Θ

(−ln(L(θ)))
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Parameter estimation with maximum likelihood

Likelihood for time correlated data

If Gaussian

ŷk|k−1 = E[yk|Yk−1, θ]

Rk|k−1 = V[yk|Yk−1, θ]

εk = yk − ŷk|k−1

then the likelihood is

L(θ) =

 N

∏
k=1

exp(− 1
2 εT

k R−1
k|k−1εk)√

|Rk|k−1|
√

2π
l


Maximised using quasi Newton
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Parameter estimation with maximum likelihood

Kalman filter

Prediction step
Based on e.g.

physical model

Prior knowledge
of state

Update step
Compare prediction

to measurements

Measurements

Next timestep

Output estimate
of state

Figure: ”Basic concept of Kalman filtering” by Petteri Aimonen. Wikipedia
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Grey-box modelling with ctsm-r

Introduction to grey-box modelling
and ctsmr
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Grey-box modelling with ctsm-r

Grey-box modelling

Figure: Ak et al. 2012

Bridges the gap between physical and statistical modelling.
THERE is a manual on ctsm.info

DTU Compute TS for energy 11 / 1
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Grey-box modelling with ctsm-r

Grey-box modelling

Figure: Ak et al. 2012

Bridges the gap between physical and statistical modelling.
THERE is a manual on ctsm.info
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Grey-box modelling with ctsm-r

ctsmr

Continuous Time Stochastic Modelling in R

more correctly

Continuous-Discrete Time Stochastic Modelling in R
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Grey-box modelling with ctsm-r

ctsmr

Continuous Time Stochastic Modelling in R

more correctly

Continuous-Discrete Time Stochastic Modelling in R
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Grey-box modelling with ctsm-r

The model class

ctsmr implements a state space model with:

Continuous time stochastic differential system equations (SDE)

dXt = f (Xt, Ut, t, θ)dt + g(Xt, Ut, t, θ)dBt

Discrete time measurement equations

Ytn = h(Xtn ) + etn etn ∈ N(0, S(un, tn, θ))

Underlying physics (system, states) modelled using continuous SDEs.

Some (or all) states are observed in discrete time.
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Grey-box modelling with ctsm-r

Features in CTSM-R

Automatic classification (LTI or NL)

Symbolic differentiation replaced AD (NL only)
(Jacobians are computed faster.)

Finite difference approximation of gradients are computed in parallel.

Scriptable! Run multiple model during the night. Possible to use compute cluster.

Direct access to plotting facilities from the R framework.
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Grey-box modelling with ctsm-r

Loading the library

The R package is called ctsmr

R code

library(ctsmr)

The model class is called ctsm - Continuous Time Stochastic Model.

R code

MyModel <- ctsm$new()

DTU Compute TS for energy 15 / 1
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Grey-box modelling with ctsm-r

Class.. huh?

ctsm is a ReferenceClass.

The functions are methods attached to the class.

ctsm methods

Specifying the model:

$addSystem()

$addObs()

$setVariance()

$addInput()

Estimate and prediction:

$setParameter()

$setOptions()

$estimate()

ctsmr defined functions

predict

simulate

filter.ctsmr

smooth.ctsmr

DTU Compute TS for energy 16 / 1
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Grey-box modelling with ctsm-r

How to add System Equations

Use the $addSystem method to add a stochastic differential equation as a system
equation.

R code

MyModel$addSystem( dX ∼ (mu*X-F*X/V)*dt + sig11*dw1)

MyModel$addSystem( dS ∼ (-mu*X/Y+F*(SF-S)/V) * dt + sig22*dw2)

MyModel$addSystem( dV ∼ F*dt + sig33*dw3 )

Pay attention to the ∼. Do not use =.
The diffusion processes must be named dw{n}
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Grey-box modelling with ctsm-r

How to add Observation Equations

Use the $addObs method to add a measurement/observation equation.

Y =

Y1
Y2
Y3

 =

X
S
V



R code

MyModel$addObs(y1 ∼ X)

MyModel$addObs(y2 ∼ S)

MyModel$addObs(y3 ∼ V)

Pay attention to the ∼. Do not use =.
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Grey-box modelling with ctsm-r

How to set the Variance structure of the Measurement
Equations
The Example

Use the $setVariance method.

Example

MyModel$setVariance(y1y1 ∼ s11)

For y1,,y2,y3 the size of the variance-covariance matrix is 3x3.

S =

s11 0
s22

0 s33


R code

MyModel$setVariance(y1y1 ∼ s11)

MyModel$setVariance(y2 ∼ s22)

MyModel$setVariance(y3^2 ∼ s33)

Pay attention to the ∼. Do not use =.

DTU Compute TS for energy 19 / 1
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Grey-box modelling with ctsm-r

Which variables are inputs?

Use the $addInput method to specify which variable is an input and not a parameter.

R code

MyModel$addInput(F)
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Grey-box modelling with ctsm-r

How to specify initial values, boundaries and prior standard deviance (for MAP)?

Use the $setParameter method.

R code

MyModel$setParameter(X = c(init=1,lb=0,ub=2),

S0 = c(0.25,0,1))

MyModel$setParameter(V0 = c(1,lower=0,upperbound=2))

Pay attention to the =. Do not use ∼.
Quite flexible.

Named numbers (e.g. init=3) are processed first.

Initial state values (e.g. X0) can be named X0 or X.

MyModel$ParameterValues contains the parsed values.
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Grey-box modelling with ctsm-r

How to change filtering and numerical optimisation options
(advanced)?

Use the $setOptions method to change the options found in MyModel$options.

DTU Compute TS for energy 22 / 1



Grey-box modelling with ctsm-r

Specify the data

ctsm expects a data.frame containing time and all inputs and outputs.

Example

MyData <- data.frame(t = c(1,2,3), F = c(4,3,2), Y1 = c(7,6,5), Y2 =

...)

Multiple independent datasets can be given as a list of data.frames.

Example

AllMyData <- list(MyData1, MyData2, MyData2, ...)
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Grey-box modelling with ctsm-r

Estimate the parameters

To estimate the parameters run:
fit <- MyModel$estimate(data = MyData)
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Grey-box modelling with ctsm-r

Parameter inference

Like lm() use summary() on the fit for additional information.

Parameter estimates alone:
fit

+ standard deviance, t-statistics and p-values:
summary(fit)

+ correlation of parameter estimates:
summary(fit, correlation=TRUE)

+ additional information
(

dF
dθ , dPen

dθ

)
:

summary(fit, extended=TRUE)
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Grey-box modelling with ctsm-r

How to get k-step predictions

Use the predict function.

Usage

one.step.prediction <- predict(fit)

Available options:

n.ahead number of steps ahead to predict.

newdata to predict using a new dataset.
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Grey-box modelling with ctsm-r

Diagnostics

k-step predictions predict

filtered states filter.ctsmr

smoothed states smooth.ctsmr

simulations simulate

likelihood ratio tests
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Example: heat dynamics of a building

Example: Selecting a suitable grey-box
model for the heat dynamics of a building
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Example: heat dynamics of a building

Test case: One floored 120 m2 building

Objective

Find the best model describing the heat
dynamics of this building
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Example: heat dynamics of a building

Data

Measurements of:

yt Indoor air
temperature

Ta Ambient temperature
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Example: heat dynamics of a building

Two big challenges when modelling with data

Model selection: How to decide which model is most appropriate to use?
We are looking for a model which gives us un-biased estimates of physical
parameters of the system. This requires that the applied model is neither too
simple nor too complex

Model validation: How to validate the performance of a dynamical model?
We need to asses if the applied model fulfill assumptions of white-noise errors, i.e.
that the errors show no lag-dependence
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Model selection

Model selection

Likelihood ratio test: Test for model expansion

Say we have a model and like to find out if an expanded version will give a significantly
better description of data

i.e. give an answer to: Should we use the expanded model instead of the one we have?

The likelihood ratio test

λ(y) =
Lsub (θ̂mle,sub )

L(θ̂mle )

can be applied to test for significant improvement of the expanded model (with
maximum likelihood Lsub (θ̂mle,sub )) over the sub-model (with maximum likelihood L(θ̂mle ))
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Model selection

Test for expansion

Simplest model

Ci

Ti

Interior

Φh

Heater

AwΦs

Solar
Ria

Envelope
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Ambient

First extension: building envelope part (TiTe)
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AwΦs
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Envelope

+− Ta

Ambient
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Model selection

Test for expansion

Simplest model

Ci
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Model selection

Test for expansion

Simplest model
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First extension: sensor part (TiTs)
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Model selection

Test for expansion

Simplest model

Ci

Ti

Interior

Φh

Heater

AwΦs

Solar
Ria

Envelope

+− Ta

Ambient

First extension: heater part (TiTh)
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Model selection

Test for expansion

Simplest model

Ci

Ti

Interior

Φh

Heater

AwΦs

Solar
Ria

Envelope

+− Ta

Ambient

First extension: Which one??

TiTe, TiTm, TiTs, or TiTh ?
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Model selection

Log-likelihoods

Simplest Ti
l(θ;YN) 2482.6
m 6

Expanded TiTe TiTm TiTs TiTh
l(θ;YN) 3628.0 3639.4 3884.4 3911.1
m 10 10 10 10

Likelihood-ratio test

Sub-model Model m− r p-value

Ti TiTh 4 < 10−16
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Model selection

Identify the best physical model for the data

Simplest model

Ci

Ti

Interior

Φh

Heater

AwΦs

Solar
Ria

Envelope
+− Ta

Ambient
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Model selection

Identify the best physical model for the data

Simplest model
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Most complex model applied
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Model selection

Identify the best physical model for the data

Simplest model

Ci

Ti

Interior

Φh

Heater

AwΦs

Solar
Ria

Envelope

+− Ta

Ambient

The best model for the given data is probably in between

Most complex model applied
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Model selection

Iteration Models

Start Ti
l(θ;YN) 2482.6
m 6

1 TiTe TiTm TiTs TiTh
3628.0 3639.4 3884.4 3911.1
10 10 10 10

2 TiThTs TiTmTh TiTeTh
4017.0 5513.1 5517.1
14 14 14

3 TiTeThRia TiTeThAe TiTmTeTh TiTeThTs
5517.3 5520.5 5534.5 5612.4
15 15 18 18

4 TiTeThTsRia TiTmTeThTs TiTeThTsAe
5612.5 5612.9 5614.6
19 22 19

5 TiTmTeThTsAe TiTeThTsAeRia
5614.6 5614.7
23 20
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Model selection

Iteration Sub-model Model m− r −2log(λ(y)) p-value

1 Ti TiTh 4 4121 < 10−16

2 TiTh TiTeTh 4 4634 < 10−16

3 TiTeTh TiTeThTs 4 274 < 10−16

4 TiTeThTs TiTeThTsAe 1 6.4 0.011
5 TiTeThTsAe TiTeThTsAeRia 1 0.17 0.68
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Model validation

Model validation

How can the performance of a dynamical model be evaluated?

We assume that the residuals are i.i.d and normal

Auto-Correlation Function (ACF) and Cumulated Periodogram (CP) of the errors
are the basic tools

Time series plots of the inputs, outputs, and the errors are valuable for pointing out
model deficiencies

DTU Compute TS for energy 38 / 1



Model validation

Evaluate the simplest model
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Model validation

Evaluate the model selected in step one
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Model validation

Evaluate the model selected in step two
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Model validation

Evaluate the model selected in step three
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Model validation

Evaluate the selected model in step four
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Model validation

Selected model
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Model validation

Selected model

Cs

Ris

Ts

Sensor

Ci

Ti

Interior

Φh

Ch

Rih

Th

Heater

AwΦs

Solar

Ce

Rie Rea

Te

AeΦs

Envelope

+− Ta

Ambient

Estimated parameters

Ĉi 0.0928 (kWh/◦C)
Ĉe 3.32 -

Ĉh 0.889 -

Ĉs 0.0549 -
R̂ie 0.897 (circC/kW)
R̂ea 4.38
R̂ih 0.146 -
R̂is 1.89 -

Âw 5.75
(
m2)

Âe 3.87 -

Estimated time constants

τ̂1 0.0102 hours
τ̂2 0.105 -
τ̂3 0.788 -
τ̂4 19.3 -
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Example: heat dynamics of a building

Conclusions

Applied Grey-box modelling, where a combination of prior physical knowledge and
data-driven modelling is utilized

Using a forward selection procedure with likelihood-ratio tests a suitable physical
model is found

The ability of the selected models to describe the heat dynamics are evaluated with
the ACF, CP, and time series plots
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Identifiability

Identifiability
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Identifiability

Identifiability

Model identifiability is important for estimation in general (less important for prediction,
very important for parameter interpretation).

There are two aspects of identifiability:

Structural identifiability: the parameters in the model can never be estimated due
to the structure of the model. Depends only on the model.

Practical identifiability: there is not enough information in the data available to
estimate the parameters in the model. Depends both on the model and the data.
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Identifiability

Structural identifiability

State space model (innovation form)

dX̂(t)
dt

= AX̂(t) + BU(t) + Kε(t)

Y(t) = CX̂(t) + DU(t) + ε(t)

Apply the bilateral Laplace transformation (and after some voodoo)

Y(s) = C(sI−A)−1BU(s) + C(sI−A)−1Kε(s) + DU(s) + ε(s)

=
(

C(sI−A)−1B + D
)

U(s) +
(

C(sI−A)−1K + I
)

ε(s)

Focus on the input related transfer function

Hi(s) = C(sI−A)−1B + D (2)
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Identifiability The Wall

Analyse the identifiability of an SDE model of a Wall

A lumped RC model of the wall

dTw =
1

Cw

(
Ta − Tw

Raw
+

Ti − Tw

Rwi

)
dt + dω1(t)

dTi =
1
Ci

(
Tw − Ti

Rwi

)
dt + dω2(t)

ytk = Titk + σtk
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Identifiability The Wall

Transfer function

Apply equation ?? to obtain the input transfer function

Hinput(s) =
1

Ci Cw Raw Rwi

s2 + Raw Ci+Ci Rwi+Raw Cw
Ci Cw Raw Rwi

· s + 1
Ci Cw Raw Rwi

And compare it to

H(s) =
b0

s2 + a1 · s + a0

Only two independent equations

a0 =
1

Ci Cw Raw Rwi

a1 =
Raw Ci + Ci Rwi + Raw Cw

Ci Cw Raw Rwi
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Identifiability The Wall

Transfer function

Apply equation ?? to obtain the input transfer function

Hinput(s) =
1
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And compare it to
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Identifiability The Wall

Fit all four parameters?

Solve two equations for four parameters.

Ci = Ci
Rwi = Rwi

Cw = − Ci

Ci
2Rwi

2a0 − a1 Ci Rwi + 1

Raw = −Ci
2Rwi

2a0 − a1 Ci Rwi + 1
Ci

2Rwi a0

Note: a0 and a1 are known when simulating data.
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Identifiability The Wall

Cw is a function of other parameters

Below is the feasible Cw parameters: Cw > 0
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Identifiability The Wall

Estimate two parameters

We can estimate two.. So try fixing Rwi and Raw
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Identifiability The Wall

Estimate two parameters

We can estimate two.. So try fixing Cw and Raw
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Identifiability The Wall

Estimate two parameters

We can estimate two.. So try fixing Cw and Rwi
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Identifiability The Wall

Estimate two parameters

We can estimate two.. So try fixing Rwi and Ci
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Identifiability The Wall

Estimate two parameters

We can estimate two.. So try fixing Raw and Ci
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Identifiability The Wall

Estimate two parameters

We can estimate two.. So try fixing Ci and Cw
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