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Using Smart Meter Data to Assist in Energy
Performance Measurement

Todays session will cover the following:

* The need for measurement of energy in
buildings (briefly)

« Smart meters, context, capabilities and limits

« Examples of Smart meter — energy
performance work

 How do we get the data
* Final closing remarks

DYNASTEE

Energy House Labs:
What we do and why....

Dr Richard Fitton
Reader in Energy
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Energy consumption in the home and
small commercial

Changes to the energy system —
decarbonisation, decentralisation and
digitisation

Everything from insulation, to heating
systems, controls, smart meters and
electric vehicles

Domestic enerav is aettina comnolicated
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ENERGY
OLD MODEL HOUSE,
LABS
Simple model we were working to SIMPLE

| CONSUMER
mm.
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domestic energy
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SCOPE

What do we do?
ENERGY
HOUSEﬁ

Research:

* Retrofit of fabric (insulation
air tightness etc)

*  Smart controls
Electric Vehicle Charging
Building performance
methodologies
Large scale field trials

Commercial testing of energy
savings devices

DYNASTEE

— —

ENERGY
HOUSE,,

THERMAL SMART \ SMART
MEASUREMENT METERS # HOMES
LABORATORY LAB
Research: Research:
* Ageing of insulation materials . H
* Recycled materials for use as App“ance .
insulation disaggregation
« Insulation values of thatched . Smart meter”OT
properties .
linkage
* Commercial testing of ° Data analytics
conductivity of insulation ) B .
products with Field Trial
team
* Innovative uses
for SM data
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Researchers and industry are quickly realising that the
worlds of energy and environmental modelling and the real
world often do not intersect. This has been shown in many
studies globally. This is known as the “Performance Gap”

(PG)
1 74% Canada 1 74% (Rouleau et al.,
2018)
3400 30% Germany 3400 30% (Galvin, 2014)
25 50% United Kingdom 25 50% (Johnston et al.,
2015a)
50000 1% Switzerland 50000 1% (Cozza et al,
2020)
France
6 45% Italy 6 45% (Ballarini &
Corrado, 2009)
11
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Performance gap can be found in either the
positive or negative side of the modelled value.

* Many researchers have tried to state what may
cause PG.

» The PG is actually caused by a number of
different reasons.

» Atypical reason could be the gap between a
default value entered into an energy model that
wasn’t included in the actual building

12
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This can explain some issues, but as researchers
we dig deeper:

« The way we model may not be perfect, but
modelling should be accepted as a simplification
of a building and not reality itself.

» Also many people will criticise a model after
analysing results form a poorly measured
/sensored measurement campaign, with
consideration for uncertainty etc.
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How can smart meters help?

Historically. Some of the older members of the
audience may remember these:

Mage In un
2008 ce

Open \ i
Energy
Monitor
% i

14
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How can smart meters help?
Historically.

In 2021 should we be gluing sensors to the
front of gas and electric meters?

Plus, they fall off, occupants remove them, they
need comms adding, and that is all expensive,
and can be inaccurate.

So now we can do things a little “smarter’ in
some cases

15
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How can smart meters help?
So what is a smart meter?

In 2021 should we be gluing sensors to the
front of gas and electric meters?

Plus, they fall off, occupants remove them, they
need comms adding, and that is all expensive,
and can be inaccurate.

So now we can do things a little “smarter” in
some cases

16
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In 2021 should we be gluing sensors to the
front of gas and electric meters?

Plus, they fall off, occupants remove them, they
need comms adding, and that is all expensive,
and can be inaccurate.

So now we can do things a little “smarter’ in
some cases i ! .

17
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What is a smart meter?

No definition! / No harmonisation/ No common data patterns/ No standard comms!

European Smart Meter Association however do advise that smart meters
should have the following characteristics:

Automatic processing, transfer, management and utilisation of metering
data

Automatic management of meters
2 way data communication with meters

Provides meaningful and timely consumption information to the
relevant actors and their systems, including the energy consumer
Supports services that improve the energy efficiency of the energy
consumption and the energy system (generation, transmission,
distribution and especially end use)

Can be used on multiple utilities, such as water, gas and electric,
generally one meter for each.

18
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What is a smart meter?

19
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What is a smart meter?

There is also no harmonisation across the EU, either
technically or even with regards to rollouts, although
there is an aim:

It is an aim of the European Union (EU) to
introduce smart meters across the union
at a rapid rate with the aim of 72%
coverage for electric and 40% for gas
metering.
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Rollout:
These figures are quite old but are the latest

ones: . = =
tear namic ro
strategy 2016 Dﬂ):qvers 5 "2:3/ m
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o
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Slovakl USmartConsumer
No clear
strategy
No legal Clear lagal
framework Legal and Regulatory Status framework
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Rollout:
Electric

N |

2005

*r—
—
>~—
>
-——
—

2000

® > £ 2 8 E @ ¥ = g ¥ P 8§ ®w =2 E 2 T 3 8 ® &
2 3 § ¢ 2 g 2 = g £ g2 2 2
5 3 § £ £ 8 % E 5 5 & 2 z 5 § & 3% 8 % %
< : & &8 2 § E & E E 2 Dgffln§4=t‘3
i g = &©® £ <« & @ w a E o 35 o g £E £ B
£ ¥ o T "4 [ i 0
] % )
Z B 3 ]
c
=] (&)

22



DYNASTEE

University of
Salford
MANCHESTER
Rollout:
Gas ..,
2025
2015 l l i
2005 )
\‘;&\7 @3\.& @
23
University of
Salford
MANCHESTER

What can they do:
Another non harmonised issue!

» Meter readings are taken over a range of 10
seconds to 60 minutes for electricity.

» Gas is less usually around 30 minutes and
the device is remote from a power supply and
is battery powered

* The key message is smart meters and the
data offered is VERY country specific.

DYNASTEE

24
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Can Smart Meters generate accurate energy
ratings on their own, probably not!

Generally for energy efficiency works without
going to detail, a source of inside and outside
temperature is needed.

* We can get smart meter data remotely so we
need something similar

* |OT is our friend here, smart thermostats,
boilers with comms, heat meters etc.

25
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Smart Devices:

/-\ fj
~
A smart thermostat A smart thermostat
communicates with allows the user to
other devices via set up a schedule
the internet or for its operation.
another wireless

79°F

m 0]

Thermostals may
automatically
“learn” how to
operate optimally

A smart thermostat
allows the user fo
remotely monitor
and control its

operation via an ?0596 on \'fW'
in-home display. abits, prel ferences,
computer, or o other conditions
mobile device. like the price of
energy or what
other appliances
A smart thermostat A smart thermostat are doing.
detects the home's can send
occupancy and nofifications to your
adjusts the mobile device if
heating/cooling ihere is @ problem
systems with your heating
accordingly. or cooling systems

and when it is fime
1o replace air filters.
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Smart Devices:

» Actual sales figures are difficult to come by as these are
commercially sensitive, but the trend is clear: Shin et al
estimated that smart home technologies are currently present in
7.5% of homes globally with an annual market of $44.2 million in
2018 (Shin et al., 2018).

* The EU is a strong leader in this market place with a recent
Berg Insight market research report claiming that at the end of
2017 the EU had around 22.5 million smart homes or 9.9% of
households with France, Germany and the UK leading the
market (Berg, 2018).
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So if we presume that we can access the data
(more of this later), then what can we do with
that data:

A couple of high profile projects have recently
worked with SM data, with well documented

outputs. These are the latest ones:
* Annex 71 (pan EU)
https://bwk.kuleuven.be/bwif/projects/annex7 1

« SMETERS (UK only) https.//www.qov.uk/quidance/smart-meter-
enabled-thermal-efficiency-ratings-smeter-innovation-
programme (data to be released October 2021)

28
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ANNEX 71 Final Meeting Youtube playlist
contains many videos on this topic including,
data collection, analysis, interpretation, policy
implications and much more

This has just been released here

https.://www.youtube.com/watch?v=h8nt_pEx36M&list=PL26pymJI0
WS2e-GltP1eLa_bdcLOBVpOH&index=1

29
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SMETER had an online workshop which is
relevant to todays session. This is worth a
view.

https://www.youtube.com/watch?v=kpwJaVek4
QO
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The findings from these reports are interesting

and state that this method of estimating energy
perform well and have lots of scope for further

work.

So how do we actually get this data?

This is highly country/ supplier specific. But lots
of suppliers will have an interface to the data
using a cloud platform.

31
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This platform usually has an API:

(API= Application Programming Interface, allows two
applications to talk to each other)

The Octopus has a number of possible data
points
» Octopus Energy provides a REST API for customers and partner

organisations to interact with our platform. Amongst other things, it
provides functionality for:

Browsing energy products, tariffs and their charges.

Retrieving details about a UK electricity meter-point.

Browsing the half-hourly consumption of an electricity or gas meter.
Determining the grid-supply-point (GSP) for a UK postcode.
Creating a quote.

Creating a account.
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We will present an example as follows:

Apologies for UK centric angle, but this
should still help.

Octopus Energy - (supplier)

Smart meter install - (Electric)

Data — energy consumption

Frequency - 30 mins

Domestic Installation

Thanks to Dr | Paraskevas and A Sitmalidis

i i DYNASTEE
University of o

X

for this presentation
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Walkthrough
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Walkthrough

Sample JSON files can be received by emailing

R.fitton@Salford.ac.uk
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Space Heating Data

A key component for any heat loss/ HTC
estimation is the Delta component (Internal and
external data)

Some easy to use (and working systems)
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https.//www.openhab.org/addons/bindings/tado/

=y
- -
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Honeywell Evohome

https.//developer.honeywellhome.com/content/q
etting-started-guide

£ i
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Google Nest

https.//developers.google.com/nest/device-
access/api/thermostat

S
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Air Source Heat Pumps
https://api.nibeuplink.com
SEE EXCEL ©- U NCORO)KC,
SHEET :“ﬁﬁn‘m‘gr}'m.?""“""""""“‘:""'E
2 0 0 &
e 0 o eed
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No Energy rating estimation is possible without
external conditions

Weather compensation sensors
Weather observations API
Forecasted weather API

BEMS Systems

41
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Data observation:

Of course data can have glitches, it can be
correct or incorrect.

You should use some relevant mechanisms to
check your data makes sense.

Just because something is smart does not
make it right

Data often drops/has gaps etc, so you need to
deal with this also.

Some excellent advice is found here https.//iea-
ebc.orqg/projects/project?AnnexID=58
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How can you start doing this:

Smart meter data is now fairly easy to achieve, however it is totally
unique to the country and supplier, you are going to have to have to
do some research.

Please note :Data and GDPR, this needs a significant amount of
thought, people’s life's are well documented through energy
consumption and heating patterns and it should not be in the public
domain.

It should never be linked to personal data such as addresses,
peoples names etc, where it can be used for nefarious purposes.

43
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What else can we do:

This is just the start of an energy data
revolution, more data will come on stream, EV,
ASHP batteries, Heat meters etc.

If we merge in other data sources we can
extrapolate more sensing, if we know where the
EV is we can map temp data efc.

Lets take a look, my journey home last night:
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Free On-Line Training Webinars; 22 and 29 September, 6 and 13 October 2021

Dynamic Calculation Methods for Building Energy
Performance Assessment
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https://dynastee.info/

DYNASTEE

DYNASTEE - OBJECTIVE

Global leading network on dynamic testing and
evaluation of Energy Performance in Buildings

Consolidation of existing knowledge

Bringing together academic, industry and
governmental experts

—on the test environment and experimental
setup as well as on the data analysis and
performance prediction.

DYNASTEE - NoE: ST5 of IEA EBC Annex 71

DYNASTEE

TRAINING OBJECTIVES ¥

Background to Course

The course has two main objectives:

« Train a dynamic methodology to assess the thermal
performance of a building such as a wall, and a whole
buildings’ performance.

+ Examine and understand the performance of nZEB and
renewable energy technologies in built environment

The approach to these will be a combination of building
physics, applied mathematics and statistical methods
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Overall Topic of Sessions

Building physics to support the development of mathematical
models for energy performance assessment.

Knowledge of thermodynamic processes, heat transfer and the
impact of solar radiation.

Thermal conduction, convection, radiation and thermal mass.
Using benchmark data for analysis

Complexity of the physical process and how to translate the
available information in mathematical models,

Importance of model simplification of building physics represented
by measured signals.

Variability of the environments and the uncertainty of data

Measured data and not-measured phenomena and how to build a
mathematical model based on the available input.

DYNASTEE

-

The Experts

* Maria José Jiménez (CIEMAT, Spain),

* Irati Uriarte (UPV-EHU, Bilbao, Spain),
.+ Hans Bloem (INIVE-DYNASTEE, BE),

» Paul Baker (GCU, Glasgow, UK),

+ Aitor Erkoreka (UPV-EHU, Bilbao, Spain
» Peder Bacher (DTU, Lyngby, Denmark),
* Richard Fitton (University of Salford, UK) g
Luk Vandaele (INIVE-DYNASTEE, BE)
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PRESENTATIONS

» Introduction to general approach of different analysis techniques used to
perform the thermal characterisation for elements (walls, roofs etc)
through to the whole building.

+ Two software tools have been introduced that could be used during series
of webinars; LORD, and CTSM-R. An easy exercise is available given
with the correct result that may help you to build confidence in your
analytics skills

» Introduction to measured data, specific sensors for buildings physics and
energy performance and what is important to know about building physics,
sensors and instruments

» The experimental set up and measurements at the Plataforma Solar de
Almeria (PSA)has been presented, an explanation and demonstration of
the data available have been given. Data series 16-17 have been
presented.

DYNASTEE
o'e
X

PRESENTATIONS

Data that can be used be the participants is available at the website
dynastee.info; zipped folder PSA_RRbox_DataSeries20

» An exercise that will allow of a study to be analysed with and without solar
radiation.

* An introduction to dynamic analysis methods specifically LORD has been
will provided

» A practical demonstration has been given of the software tool LORD on the
PSA data series 16 and 17

* Introduction to discrete time and continuous time methods and how to use
CTSM-R with statistical tools .

» Demonstration of the CTSM-R software applied to PSA data series 16,17.

» An introduction to the analysis of metering data, the specification and
limitations of the data and analysis techniques.



https://dynastee.info/wp-content/uploads/2020/09/PSA_RRbox_DataSeries20.zip
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CONCLUSION

“One needs a certain level of skill to
perform well”

* Improve knowledge through a Training and
Competition

» After >25 years DYNASTEE states:

Training make sense

DYNASTEE
o'e
=X

CONCLUSION

These webinars have been attended by 26 people

Improve your knowledge and your skill through a
Competition

DYNASTEE investigates the organization of such a
Dynamic Analysis Competition

Could be whole building energy performance
assessment based on metering data and/or real
measurements
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Future; 2022

Last year is atypical; the decision was made to postpone the complete
Summer School for good reasons and substitute it by a series of
webinars

However we are already planning the next summer school to take place
in Almeria in Spain in 2022, this will be a full Summer School with
classroom-based learning sessions and interactive sessions.

11
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Future; 2022 and beyond

We will be using the forthcoming year to work on new topics for the
summer school as follows:

* Use of online data platforms such as weather API, renewable
energy data

* Use of on-board systems such as connected thermostats
+ Use of smart metering data for energy input

Most countries now have access to at least most of these data, and
some, all of it.

* The work and findings of IEA Annex 71 which focus on the data
mentioned above to deem the energy performance of a dwelling.
https://dynastee.info/new-iea-ebc-annex-71-building-energy-
performance-assessment-based-on-in-situ-measurements/

*  We will provide learning on not only the acquisition of this data
using live API access to smart meter and controls, but the
analytical tools to deem the energy performance.

12
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Free On-Line Training Webinars; 22 and 29 September, 6 and 13 October 2021

THANKS TO

Webinar management

Maria Kapsalaki Valérie Leprince
(INIVE, BE) (INIVE, BE)
Disclaimer: The sole r ibility for the content of pi ions and information given orally during DYNASTEE webinars lies with the authors. It does not necessarily reflect the opinion of

DYNASTEE. Neither DYNASTEE nor the authors are responsible for any use that may be made of information contained therein.

DYNASTEE

__ _WWW.DYNASTEE.INFO
& DYNASTEE - ... .-

DYNamic Analysis, Simulation and Testing
applied to the Energy and Environmental

performance of buildings

Muuil-
Home About Dynastee~- Data Analysisw Events~ Publications~ Contact

On-line Training Newsletters

During Spring 2020 the DYNASTEE board has decided that it will support on-line training. It will do

so by organising a series of webinars during September 2020 on each Wednesday from 10:00 to ‘ DYNASTEE
12:00. Each webinar will be composed of two lectures and introduce an exercise using benchmark
data that will be made available to the participants for training.

The proposed on-line training concerns the application of Dynamic Calculation Methods for Building
Energy Performance Assessment. The proposed program for the webinars can be found
Program_OnLineTraining20s.

Note that these webinars cannot be compared with the traditional and physical Summer School that
DYNASTEE has organised for the last 8 years, where a close interaction between lecturers and
participants is taking place. The webinars should be considered as a helping hand to get started
with Dynamic Calculation Methods for Building Energy Performance Assessment.

To getanim presslon of what these webinars are about, a recent extensive paper presenting the
ality data from an outdoor experiment can be downloaded
Aso during the webinars, reference is made to benchmark

14



DYNASTEE
X
X

Introduction to measured data,
Instrumentation and sensors in
relation to building physics and
energy performance.
What is important to know?
QUESTIONS

Aitor Erkoreka
University of the Basque Country (UPV/EHU)

«vww 15

1
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Questions for Aitor Erkoreka

On the internal surface temperature measurement. how did you consider
overheating on captors exposed to solar radiation ? Especially on captors on internal

surface of glazing

Considerations on temperature measurements: THERMORESISTANCE

The main advantages of the thermoresistances are:
- Accuracy r
- Sensitivity A

The main disadvantages of the thermoresistan &

- Fragility
- Price (more expensive than thermoca




1 - QUESTIONS

DYNASTEE
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96x96x96 cm* 120x120x120cm?

52x52 cm?

3/5

1 - QUESTIONS

DYNASTEE
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ALMERIA - DATA SERIES 16|

2 K] E 2 ) E B z E : F x
“Time [a] - N h
—Tsi,left (cast) —Tsi, back (north) —Tsi, right (west) —Tsi, celling —Tsi, floor  —Tsi, glazing (south)

ALMERIA - DATA SERIES 16|

E i H i B E E 3 z z E
Time[h] B B -
—Tse, left (east) — Tse, back (north) —Tse, right (west) —Tse, celling —Tse, floor —Tse, glazing (south)
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Introduction to ctsm-r

(Based on slides created by Rune Juhl)

Peder Bacher

DTU Compute, Dynamical Systems
Building 303B, Room 010

DTU - Technical University of Denmark
2800 Lyngby — Denmark

e-mail: pbac@dtu.dk

Summer school 2021:

Time Series Analysis - with a focus on Modelling and Forecasting in Energy Systems

DTU Compute TS for energy
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Overview

DTU Compute TS for energy
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Population and sample

(Infinite) Statistical population

Randomly
selected

Statistical
Mean Inference

TS for ener; gy

Sample
{yllyz //// yn}

l

Sample mean
X
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Parameter estimation with maximum likelihood

Parameter estimation with example

Simplest example: a constant model for the mean

@ Model
Y;=p+e , wheree; ~N(0,0%) and i.id.

@ i.i.d.: identically and independent distributed
@ The parameters are: the mean y and the standard error o

@ We take a sample of n = 10 observations

(v1,Y2,---,¥10)

DTU Compute TS for energy

4/1



Parameter estimation with maximum likelihood

The likelihood is defined by the joint probability of the data

L(w, o) =py1,y2,-- -, Y10lp, o)

Hence, it's a function of the two parameters (the sample is observed, so it is not varying).
Due to independence
10
=[Irilp.o)

i=1

We assume in our model that the error ¢; = Y; — p is normal distributed (Gaussian), so

-1 (vi —p)?
MMMG—mewp<2ﬁ ) 1)

DTU Compute TS for energy 5/1



Maximum likelihood estimation

Parameter estimation

>
I

argreréiél (—In(L(8))

where 0 = (u,0)

DTU Compute TS for energy
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Maximum likelihood estimation

Parameter estimation

0= argreréiél (—In(L(8))

where 0 = (u,0)

Run the example in R

DTU Compute TS for energy
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Likelihood for time correlated data

Given a sequence of measurements Vy
L(0) = p(In16) = p(yn,yN-1,- -, Y0l6)
N
= Hp(yklyk1,9)> p(yol6)

Parameter estimation

§= arglgléig(—m(L(g)))

DTU Compute TS for energy 7/1



Parameter estimation with maximum likelihood

Likelihood for time correlated data

If Gaussian
Ixk—1 = Elykl Vi1,
Rije—1 = Vx| Vik-1,6]
& = Yk — Pkjk—1

then the likelihood is

N eXP(*%ssz,lﬁk)
L) =|I1 |

I
k=1 /|Rp—1lv27

Maximised using quasi Newton

DTU Compute TS for energy



Parameter estimation with maximum likelihood

Kalman filter

Prediction step
—> Basedone.dg.
physical model

. ! |

Prior knowledge Pj_1jk—1
of state —> Xp—1|k—1

Next timestep Ijk\k—l
k+—k+1 Xk|k—1
P K|k Update step Measurements
X < Compare prediction -e—
K|k Yk »

to measurements

|

Output estimate
of state

Figure: "Basic concept of Kalman filtering” by Petteri Aimonen. Wikipedia

DTU Compute TS for energy



Introduction to grey-box modelling
and ctsmr

DTU Compute TS for energy



Grey-box modelling

White Grey Black

Deterministic Data
equations

Detailed
submodels

Physiological Physiological
knowledge knowledge

Figure: Ak et al. 2012
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ctsm.info

Grey-box modelling

White Grey

Deterministic Data
equations

Detailed
submodels

Physiological Physiological
knowledge knowledge

Figure: Ak et al. 2012

Bridges the gap between physical and statistical modelling.

THERE is a manual on ctsm.info

DTU Compute TS for energy

Black
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ctsm.info

Grey-box modelling with ctsm-r

ctsmr

Continuous Time Stochastic Modelling in R
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Grey-box modelling with ctsm-r

ctsmr

Continuous Time Stochastic Modelling in R

more correctly

Continuous-Discrete Time Stochastic Modelling in R

DTU Compute TS for energy
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Grey-box modelling with ctsm-r

The model class

ctsmr implements a state space model with:
Continuous time stochastic differential system equations (SDE)

dXt :f(Xt, U, t, G)dt +g(Xt, U, t, G)dBt

Discrete time measurement equations
Ytn = h(th) + e, ey, € N(O,S(un, ty, 9))

@ Underlying physics (system, states) modelled using continuous SDEs.

@ Some (or all) states are observed in discrete time.
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Features in CTSM-R

@ Automatic classification (LTI or NL)
@ Symbolic differentiation replaced AD (NL only)
(Jacobians are computed faster.)
@ Finite difference approximation of gradients are computed in parallel.
@ Scriptable! Run multiple model during the night. Possible to use compute cluster.
@ Direct access to plotting facilities from the R framework.
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Loading the library

The R package is called ctsmr

R code
library(ctsmr) J
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Loading the library

The R package is called ctsmr

R code
library(ctsmr) J

The model class is called ctsm - Continuous Time Stochastic Model.

R code
MyModel <- ctsm$new() J
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Class.. huh?

@ ctsm is a ReferenceClass.

@ The functions are methods attached to the class.
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Class.. huh?

@ ctsm is a ReferenceClass.

@ The functions are methods attached to the class.

ctsm methods

Specifying the model: Estimate and prediction:
@ $addSystem() @ $setParameter()
@ $addObs() @ $setOptions()
o $setVariance() @ Sestimate()
@ $addinput()
ctsmr defined functions
@ predict @ filter.ctsmr
@ simulate @ smooth.ctsmr
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How to add System Equations

Use the $addSystem method to add a stochastic differential equation as a system
equation.

R code

MyModel$addSystem( dX ~ (mu*X-F*X/V)*dt + sigli*dwl)
MyModel$addSystem( dS ~ (-muxX/Y+F*(SF-S)/V) * dt + sig22*dw2)
MyModel$addSystem( dV ~ Fxdt + sig33*dw3 )

Pay attention to the ~. Do not use =.
The diffusion processes must be named dw{n}
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How to add Observation Equations

Use the $add0bs method to add a measurement/observation equation.

Y1 X
Y= |Y2| =[S
Y3 14

R code

MyModel$addObs(yl ~ X)
MyModel$addObs (y2 ~ S)
MyModel$addObs (y3 ~ V)

Pay attention to the ~. Do not use =.
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Grey-box modelling with ctsm-r

How to set the Variance structure of the Measurement

Equations
The Example

Use the $setVariance method.

Example
MyModel$setVariance(ylyl ~ si11) J
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Grey-box modelling with ctsm-r

How to set the Variance structure of the Measurement

Equations
The Example

Use the $setVariance method.

Example
MyModel$setVariance(ylyl ~ si11) J

For y1,,y2,y3 the size of the variance-covariance matrix is 3x3.

sl1 0

s22

S =
O s33

R code

MyModel$setVariance(ylyl ~ si1)
MyModel$setVariance(y2 ~ s22)
MyModel$setVariance(y3~2 ~ s33)

Pay attention to the ~. Do not use =.
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Grey-box modelling with ctsm-r

Which variables are inputs?

Use the $addInput method to specify which variable is an input and not a parameter.

R code
MyModel$addInput (F) J
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How to specify initial values, boundari€s . s aeince or wne) ¢

Use the $setParameter method.

R code

MyModel$setParameter (X = c(init=1,1b=0,ub=2),
S0 = ¢(0.25,0,1))
MyModel$setParameter (VO = c(1,lower=0,upperbound=2))

Pay attention to the =. Do not use ~.
@ Quite flexible.
@ Named numbers (e.g. init=3) are processed first.
@ Initial state values (e.g. Xp) can be named X0 or X.

@ MyModel$ParameterValues contains the parsed values.
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Grey-box modelling with ctsm-r

How to change filtering and numerical optimisation options
(advanced)?

Use the $setOptions method to change the options found in MyModel$options.
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Specify the data

ctsm expects a data.frame containing time and all inputs and outputs.

Example

MyData <- data.frame(t = c(1,2,3), F = c(4,3,2), Y1 = c(7,6,5), Y2 =
)

Multiple independent datasets can be given as a list of data.frames.

Example

AllMyData <- list(MyDatal, MyData2, MyData2, ...) J
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Estimate the parameters

To estimate the parameters run:
fit <- MyModel$estimate(data = MyData)

DTU Compute TS for energy
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Parameter inference

Like Im() use summary() on the fit for additional information.
@ Parameter estimates alone:
fit
@ + standard deviance, t-statistics and p-values:
summary (fit)
@ + correlation of parameter estimates:
summary (fit, correlation=TRUE)

@ + additional information (‘é—g, d§§n>:

summary(fit, extended=TRUE)
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How to get k-step predictions

Use the predict function.

Usage
one.step.prediction <- predict(fit) J

Available options:
@ n.ahead number of steps ahead to predict.

@ newdata to predict using a new dataset.
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Diagnostics

k-step predictions predict

filtered states filter.ctsmr

°
(]
@ smoothed states smooth.ctsmr
@ simulations simulate

°

likelihood ratio tests
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Example: Selecting a suitable grey-box
model for the heat dynamics of a building

DTU Compute TS for ener gy 28/1



Example: heat dynamics of a building

Test case: One floored 120 m? building

N

T

Objective
Find the best model describing the heat
dynamics of this building

29/1
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Example: heat dynamics of a building

Data

T T T
0 20 40 60 80 100 120 140

o=

<]

Measurements of: %N:
yt Indoor air o

temperature

T, Ambient temperature A::

@&y, Heat input ‘E;::
g Global irradiance -

@ (kW/m?)
000 010 020 030

DTU Compute
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T T T T T T T T

0 20 40 60 80 100 120 140

T T T T T T T T

0 20 40 60 80 100 120 140
Time (h)
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Two big challenges when modelling with data

@ Model selection: How to decide which model is most appropriate to use?
We are looking for a model which gives us un-biased estimates of physical
parameters of the system. This requires that the applied model is neither too
simple nor too complex

@ Model validation: How to validate the performance of a dynamical model?

We need to asses if the applied model fulfill assumptions of white-noise errors, i.e.
that the errors show no lag-dependence
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Model selection

Likelihood ratio test: Test for model expansion

Say we have a model and like to find out if an expanded version will give a significantly
better description of data

i.e. give an answer to: Should we use the expanded model instead of the one we have?

The likelihood ratio test

P

Ly (Brtesun)
/\(y) — 'sub Amle,sub
L(omle)

can be applied to test for significant improvement of the expanded model (with
maximum likelihood L_, (0,,...,)) over the sub-model (with maximum likelihood L(8,,,))
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Model selection

Test for expansion

Simplest model

Interior |

Hoater |

Solar

Envelope
Ri

AL, (

| Ambient

o

v
First extension: building envelope part (TiTe)
Interior | Heater | Solar | Envelope | Ambient
T ! ! " AAA_Te AAA -
T T TVYVY \AAB
l l 1 R Rea
| 1 Au®] |
c—=ra@® ' @ < O
LIt
‘ T ‘ ‘
I =1 I I
)
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Test for expansion

Simplest model

Interior | Heater |  Solar | Envelope 1 Ambient

L ! R

CT U w, () L T,
| R
' 4
First extension: indoor medium part (TiTm)
Interior; Medium |  Heater | Solar | Bavelope | Ambient
T | | | A‘I‘x |
T T T T Yvy T
Irs 0 |l |
o e @ @ O
e
T | | |
| | 4 | |
.
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Test for expansion

Simplest model

Interior | Heater | Solar

| Bovelope | Ambient
U R

T
v
First extension: sensor part (TiTs)
Sensor | Interior| Heater | Solar | Emvelope | Ambient
T | | A‘L{’«i |
T T T T Yvy T
=3k ] |
g @0 @ O
[eN | | | | |
T\ T\ | | |
I I =1 I I
.
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Model selection

Test for expansion

Simplest model

Interior |

Hoater |

Solar

| Envelope

Ria

Ambient

v
First extension: heater part (TiTh)
Interior | Heater | Solar | Envelope | Ambient
T | | | A‘z‘x |
T T T Yvy T
10 oeg el |
T o L @) Or
I [N} I I
| | | |
B < R |
I =1 I I y
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Test for expansion

Simplest model

Interior | Heater |  Solar | Envelope | Ambient
H ' Rt

T I I
LI T

First extension: Which one??
TiTe, TiTm, TiTs, or TiTh?

DTU Compute TS for energy 33/1



Model selection

Log-likelihoods

Simplest Ti
1(6; Yn) 2482.6
m 6

Expanded TiTe TiTm TiTs TiTh
1(6; Yn) 3628.0 3639.4 3834.4 3911.1
m 10 10 10 10

Likelihood-ratio test

Sub-model Model m—r  p-value

Ti TiTh 4 <1071
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|dentify the best physical model for the data

Simplest model

Interior 3 Heater 3 Solar 3 Envelope 3 Ambient
T I : I R I
; MW
a== | & DA, .
=

DTU Compute

TS for energy
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Model selection

|dentify the best physical model for the data

Simplest model

h=1

5 &

)

P O

©

[=

2 o=

<2

=

Fl mv

A &
L
<

: —o—

=

g

= =
=

3 ||

2w I

= 5

Most complex model applied

Ambient

Envelope

Sensor
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Model selection

|dentify the best physical model for the data

Simplest model

Ambient

Interior
T

The best model for the given data is probably in between

Most complex model applied

Ambient

Envelope

Sensor

v
=
&
“““
W
wwwaw?w wwwwww -
I
“““ (SR
£ 5 =
]|

35/1

TS for energy

DTU Compute



Model selection

Iteration Models
Start Ti
1(6; Yn) 2482.6
m 6
1 TiTe TiTm TiTs TiTh
3628.0 3639.4 3884.4 3911.1
10 10 10 10
2 TiThTs TiTmTh TiTeTh
4017.0 5513.1 5517.1
14 14 14
3 TiTeThRia TiTeThAe TiTmTeTh TiTeThTs
5517.3 5520.5 5534.5 5612.4
15 15 18 18
4 TiTeThTsRia TiTmTeThTs TiTeThTsAe
5612.5 5612.9 5614.6
19 22 19
5 TiTmTeThTsAe TiTeThTsAeRia
5614.6 5614.7
23 20

DTU Compute

TS for energy
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Model selection

Iteration  Sub-model Model m—r —2log(A(y))  p-value
1 Ti TiTh 4 4121 <1071
2 TiTh TiTeTh 4 4634 < 10716
3 TiTeTh TiTeThTs 4 274 < 10716
4 TiTeThTs TiTeThTsAe 1 6.4 0.011
5 TiTeThTsAe TiTeThTsAeRia 1 0.17 0.68

DTU Compute

TS for energy
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Model validation

Model validation

How can the performance of a dynamical model be evaluated?

@ We assume that the residuals are i.i.d and normal

@ Auto-Correlation Function (ACF) and Cumulated Periodogram (CP) of the errors
are the basic tools

@ Time series plots of the inputs, outputs, and the errors are valuable for pointing out
model deficiencies
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Evaluate the simplest model

Inputs and residuals
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Evaluate the model selected in step one

Inputs and residuals
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Evaluate the model selected in step two

Inputs and residuals
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Evaluate the model selected in step three

Inputs and residuals
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Model validation

Evaluate the selected model in step four

Inputs and residuals

I
WMy A o M /\m/\ M \ X
’ W N
0
S
S
° g WA
0
S
S
T T T T T T T T T
0 20 40 60 100 120 140
Time
ACF of residuals .
Cumulated periodogram
o 3
]
@ @
ST !
©
= o
S
w
LSy
S
< |
S
o
R
o
R
°
S
°
T T T T T (=] T T T T
0 10 20 30 40 0.0 0.1 0.2 03 0.4 05
Lag frequency

DTU Compute TS for energy

43/1



Model validation

Selected model

Sensor | Interior | Heater | Solar | Envelope ' Ambient
oo | . |
T T AW T
| | ' Re |
R i i i
| | | |
T4 G ! | |
| | |
e I I I
; | | |
| | |
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Selected model

Sensor | Interior

Model validation

M 1 Heater

LT

3 3 Bin

e ——)

| LN

Estimated parameters
¢ 00928  (kWh/°C)
§e 3.32 - Estimated time constants
Ch 0.889 -
Cs 0.0549 - 71 0.0102 hours
Re 0897  (SircC/kW) %  0.105 -
Rea 438 %3 0.788 -
lf'm 0.146 - 1, 193 -
Ris 1.89 -
A, 575 (m?)
A  3.87 -
v
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Example: heat dynamics of a building

Conclusions

@ Applied Grey-box modelling, where a combination of prior physical knowledge and
data-driven modelling is utilized

@ Using a forward selection procedure with likelihood-ratio tests a suitable physical
model is found

@ The ability of the selected models to describe the heat dynamics are evaluated with
the ACF, CP, and time series plots
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Identifiability

|dentifiability
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|dentifiability

Model identifiability is important for estimation in general (less important for prediction,
very important for parameter interpretation).

There are two aspects of identifiability:

@ Structural identifiability: the parameters in the model can never be estimated due
to the structure of the model. Depends only on the model.

@ Practical identifiability: there is not enough information in the data available to
estimate the parameters in the model. Depends both on the model and the data.

DTU Compute TS for energy 47/1



Structural identifiability

State space model (innovation form)

axe) _ AX(t) + BU(t) + Ke(t)
Y(t) = CX(t) + DU(t) + ()
Apply the bilateral Laplace transformation (and after some voodoo)
Y(s) = C(sI — A)"'BU(s) + C(sI — A)"'Ke(s) + DU(s) + €(s)
- <C(sl —A) B+ D) Us) + (C(sl —A) K+ 1) e(s)

Focus on the input related transfer function

Hj(s) = C(sI —A)"'B+D (2)
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The Wl
Analyse the identifiability of an SDE model of a Wall

A lumped RC model of the wall

1 (Ta—Tw T;— Tw)
ATy = — + dt + dwq (¢
v Cw ( Ruw Rwi 1( )
1 T — Ti
dl; = — | —— | dt +dwy (¢t
' Ci ( Rwi ) * WZ( )

Yy = Tifk + o,
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The Wl
Transfer function

Apply equation ?? to obtain the input transfer function

1
. _ Ci Cy Raw Rui
Hinpur(8) = 3 R G Rt R o 5 7 1
C; Co Raw Rui Ci Cow Raw Rui
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The Wl
Transfer function

Apply equation ?? to obtain the input transfer function

1
Ci Co Raw Rui
H‘ s) = 1w Naw Nwi
input (5) 2 + RwCCRutRwCo . g 1
Ci cw Raw Rwi Cx‘ Cw Raw Rwi
And compare it to
bo
H(s) = >
s> +al-s+al
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[CENGHELIIGAN The Wall

Transfer function

Apply equation ?? to obtain the input transfer function

1
. — Ci Cw Raw Rui
Hinpur(8) = 3 R G Rt R o 5 7 1
Ci Cw Raw Rui Ci Coo R Rui

And compare it to

_ bo
T s24al-s4a0

H(s)

Only two independent equations

1
g = =—=—5——5—
0 Ci Cw Raw Rwi
a = Raw Ci + Ci Rwi + Raw Cw

Ci Cw Raw Rwi
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The Wl
Fit all four parameters?

Solve two equations for four parameters.

Ci=Ci
Rwi = Rwi
Cw = Ci

© CPRyPap — a1 CiRyi + 1
 CRyi*ag — a1 CiRyi +1
Ci* Ry a0

Raw =

Note: ap and a; are known when simulating data.
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The Wl
Cy is a function of other parameters

Below is the feasible Cy, parameters: Cy, > 0

20 —
15 =
O 10 —
5 —
0 —
| | | | |
0.0 0.5 1.0 15 2.0
Rwi
TS for energy

log(Cw)
3
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The Wl
Estimate two parameters

We can estimate two.. So try fixing Ry; and Ruy
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The Wl
Estimate two parameters

We can estimate two.. So try fixing Ry; and Ruy

-1000

-2000

N\

25 5.0 7.5 10.0
Ci

DTU Compute TS for energy

53/1



The Wl
Estimate two parameters

We can estimate two.. So try fixing Cy and Ry

1.00

0.75

s
£ 050

-1000

-2000
0.25
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The Wl
Estimate two parameters

We can estimate two.. So try fixing Cy and Ry

0.20

0.15 —

-1000

-2000
0.05
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[CELHELIAAN  The Wall

Estimate two parameters

We can estimate two.. So try fixing Ry,; and C;

20

15

DTU Compute

0.25

0.50
Raw

TS for energy
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-1000
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Estimate two parameters
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