Field Validation of Algebraic Equations for Stack and Wind Driven Air Infiltration Calculations

Iain S. Walker* and David J. Wilson**

* Energy Performance of Buildings Group
 Energy and Environment Division
 Lawrence Berkeley National Laboratory
 Berkeley, CA, USA

** Department of Mechanical Engineering
 University of Alberta
 Edmonton, AB, Canada

ABSTRACT

Explicit algebraic equations for calculation of wind and stack driven ventilation were developed by parametrically matching exact solutions to the flow equations for building envelopes. These separate wind and stack effect flow calculation procedures were incorporated in a simple natural ventilation model, AIM-2, with empirical functions for superposition of wind and stack effect and for estimating wind shelter. The major improvements over previous simplified ventilation calculations are: a power law pressure-flow relationship is used to develop the flow equations form first principles, the furnace or fireplace flue is included as a separate leakage site and the model differentiates between houses with basements (or slab-on-grade) and crawlspace. Over 3400 hours of measured ventilation rates from the test houses at the Alberta Home Heating Research Facility were used to validate the predictions of ventilation rates and to compare the AIM-2 predictions to those of other ventilation models. The AIM-2 model had bias and scatter errors of less than 15% for wind-dominated ventilation, and less than 7% for buoyancy ("stack-effect") dominated cases.

KEYWORDS

Ventilation, infiltration, modeling, power-law, wind shelter, furnace flue.
INTRODUCTION

This paper is intended to derive the technical basis for the relationships used in the AIM-2 air infiltration model, and to describe the validation procedure used to evaluate its predictive skill. Some of the algebraic equations used in AIM-2 were presented in Walker and Wilson (1990a). A simplified version of AIM-2 has also been used for calculating attic ventilation rates by Walker, Forest and Wilson (1995). However, no derivation or physical explanation of the relationships were given.

AIM-2 combines ideas from previous ventilation models (particularly the LBL model of Sherman and Grimsrud (1980)) with new concepts (originally developed by Walker (1989)) that account for power law envelope leakage, separate flue/fireplace leaks and the differences between houses with basements (or slab-on-grade) and crawlspaces. Additional refinements regarding wind shelter calculations and adjusting windspeeds from the measurement site to the building have also been added.

Although AIM-2 has not been published in complete form the algorithms have been used since they were listed by Walker and Wilson (1990a). AIM-2 is used in the HOT2000/AUDIT2000 series of energy analysis programs produced by Natural Resources Canada (CHBA (1994)). AIM-2 has been used by other researchers in studies to model infiltration rates in residential buildings. The predictions of AIM-2 were evaluated by comparing to measured data by Palmiter and Bond (1994) and Palmiter, Bond and Sherman (1991), and in the development of a simple method for combining natural and mechanical ventilation by Palmiter and Bond (1991). In another study by Hamlin and Pushka (1994), the AIM-2 algorithms were used to predict infiltration rates for an indoor air quality model.

In the present study, over 3400 hours of measured ventilation rates in two houses were used to test AIM-2. This is part of the data base of ventilation measurements from six houses of the Alberta Home Heating Research Facility that include houses with other magnitudes and distributions of leakage. The large set of measured data provided a wide range of weather conditions and house leakage distributions, in order to exercise all parts of the model. Large quantities of measured data were required for validation because of the substantial hourly variation of natural ventilation rates.

The measured data were not used to tune coefficients in the AIM-2 model equations. Instead, the measurements were used to determine typical errors that might occur in calculating ventilation rates based on parameters that are easily determined for most houses. I.e., rather than specifying the size and location of every leak (which is not possible in most practical situations) the parameters used in the model are the envelope leakage characteristics (usually determined using a fan pressurization test, e.g., ASTM (1995) or CGSB (1986)) and simple estimates of the envelope leakage distribution. The evaluation also included comparison of the measurements with other simple ventilation models. The other models included for comparison are: the LBL (USA) model Sherman and Grimsrud (1980), the VFE (Canada) the variable n extensions of the LBL model by Yuill (1985) and by Reardon (1989), the NRC (Canada) model of Shaw (1985), and the BRE (U.K.) model of Warren and Webb (1980).

MODEL DEVELOPMENT

The development of the AIM-2 model began with deriving an exact numerical solution to the non-linear combined wind pressure and buoyancy-driven mass flow balance into and out of the building. This exact solution is presented in the Appendix. The algebraic
relationships used in AIM-2 were then developed by trial and error as closed form approximations to this exact solution.

For AIM-2 wind and stack effect flows are determined separately, then superposed as a sum of effective pressures, with a correction term that accounts for the interaction of wind and stack induced pressure. This wind and stack effect interaction term is the only empirical constant determined by comparing the AIM-2 equations to measured data.

The AIM-2 model improves estimates of air infiltration rates by incorporating a power law pressure-flow relationship, \(Q = C \Delta P^n \), into the model from first principles, by treating the furnace or fireplace flue as a separate leakage site with its own wind shelter, and by locating the flue outlet above the house (depending on the actual flue height), rather than grouping the flue leakage with the other building leaks as in other models.

The following simplifying assumptions were used in the development of the exact ventilation calculations: The building is a single, well mixed zone, wall leaks are evenly distributed over four walls, evenly distributed with height, the flue is filled with air at indoor room temperature, and the flow through all building leaks are characterised by the same power law exponent of pressure, \(n \).

In order to simplify the calculation of wind factor, the following assumptions were made about the pressure coefficients in crawl spaces and attics: The pressure coefficient on the exterior floor of the building in a crawl space can be approximated by averaging the pressure coefficients on the four external surfaces of the crawl space; the pressures on crawl space surfaces were the same as on the walls above them on each side of the building; and the pressure coefficient for the ceiling (i.e. for the attic) was assumed to be the average of the exposed attic roof and soffit surfaces.

Determining Algebraic Approximations to Exact Numerical Solutions

A key part of AIM-2 was the development of the algebraic approximations to the exact numerical solutions of the flow equations. The choice of algebraic functions was made by looking at plots of the dependence of the wind and stack factors \((f_s, f_w) \) on the leakage location and pressure exponent parameters. A list of candidate algebraic functions that had the same shape and asymptotic limits was then made. The algebraic functions for each parameter were then chosen sequentially, with the most significant parameters selected first. Less significant parameters were then combined in such a way that they did not modify the existing functions. The functions for the most significant parameters were chosen to capture most of the variability (e.g., the dependence on wall leakage) and the addition or multiplication of other functions are for secondary effects (e.g., the separate furnace flue leakage). Thus a composite function was built up that has several primary functions embedded within it. The algebraic equations in this model were developed based on several guiding principals:

- The functions had to retain dimensional consistency.
- The functions had to be as simple as possible (e.g., no hyperbolic tangents) so that they could be used in engineering design (spreadsheet) calculations.
- The functions had be robust (i.e. not blow up for any possible input parameter, e.g., limits of impermeable walls combined with leaky ceilings) and smooth so as not to give unusual values for specific cases.
- The constants and exponents were chosen to be integers, proper fractions or the leakage parameters themselves.
Power Law Flow Relationship

Fan pressurization tests of houses performed by the authors and others, including Beach (1979), Sulatisky (1984) and Warren and Webb (1980), as well as theoretical considerations from Walker, Wilson and Sherman (1996), have shown that the orifice flow assumption used in the many infiltration models is unrealistic, and that it is better to use a power law pressure-flow relationship:

$$Q = C\Delta P^n$$

(1)

The parameters C and n are usually found from fan pressurization tests of the building. For a typical residential building $n \sim 0.67$, about midway in its range from $n = 0.50$ for orifice flow to $n = 1.0$ for fully developed laminar flow.

Leakage Distribution

Pioneering work by Sherman and Grimsrud (1980) introduced the idea of using a set of quantitative parameters to describe the leakage distribution of a building envelope, and to determine the independent stack-driven and wind-driven flow rates in terms of stack and wind factors, f_s and f_w. Sherman and Grimsrud characterised the leakage distribution in terms of R, the fraction of the 4 Pa fan pressurization leakage area (A_4) in the floor plus the ceiling, and X, the difference in leakage between the floor and ceiling as fractions of the total leakage. They defined the "floor" leakage as those leakage sites that are located at (or near) the level of the building floor that rests on the basement walls, slab-on-grade or crawlspace. The "ceiling" leakage are the leakage sites that are at (or near) the ceiling level of the upper storey of the building.

In AIM-2, the furnace/fireplace flue is treated separately from the other leaks, and additional parameters are introduced to account for this separate leak: the flue leakage fraction, Y, and a flue height parameter, Z_f. The leakage distribution is specified in terms of the ratio parameters R, X and Y, that are calculated from the leakage coefficients C_{flue}, C_c, C_f, and C_w, in Equation (1) rather than from the A_4 leakage areas.

Explicit solutions require the assumption that the exponent n in Equation (1) is the same for all leakage sites. In this case, the total leakage coefficient, C, is simply the algebraic sum

$$C = C_c + C_f + C_w + C_{flue}$$

(2)

Leakage distribution parameters are defined using the format suggested by Sherman (1980), but using C instead of leakage area A_4, and with the addition of a separate flue fraction, Y.

$$R = \frac{C_c + C_f}{C} \quad \text{ceiling - floor sum}$$

(3)

$$X = \frac{C_c - C_f}{C} \quad \text{ceiling - floor difference}$$

(4)

$$Y = \frac{C_{flue}}{C} \quad \text{flue fraction}$$

(5)

In addition to the distributed leakage of the building envelope expressed in terms of R, X and Y, the normalized height Z_f of the flue is given by
Stack Effect Infiltration

The flow induced by stack effect, Q_s, is given by

$$Q_s = C f_s \Delta P_s^n$$ \hspace{1cm} (7)

where ΔP_s is the driving pressure for buoyancy-driven stack-effect flow.

$$\Delta P_s = \rho \frac{g H}{H} \left(\frac{\left| T_{in} - T_{out} \right|}{T_{in}} \right)$$ \hspace{1cm} (8)

The stack factor, f_s, was determined using the numerical solution of the exact flow equations to calculate the stack driven ventilation rate flowrate, Q_s in Equation (7) over a wide range of R, X, Y, Z_f and flow exponent, n. The explicit algebraic approximation for stack factor was developed (as discussed earlier) to give the same general dependence of f_s on these parameters as the numerical solution of the nonlinear flow balance equations. The resulting approximation for f_s is given by Equation (9). The functional form of this approximation was selected to produce the correct limits for f_s when all leakage is concentrated in the walls ($R = 0$), or in the floor and ceiling ($R = 1$), for the ceiling-floor difference ratio limits of $X = +1.0, -1.0$ and at the $X = 0$ midpoint.

$$f_s = \left(\frac{1 + nR}{n + 1} \right) \left(\frac{1}{2} \cdot \frac{1}{2} M \right)^{n+1} + F$$ \hspace{1cm} (9)

where

$$M = \frac{(X + (2n + 1)Y)^2}{2 - R} \right \text{ for } \frac{(X + (2n + 1)Y)^2}{2 - R} \leq 1$$ \hspace{1cm} (10)

with a limiting value of

$$M = 1.0 \right \text{ for } \frac{(X + (2n + 1)Y)^2}{2 - R} > 1$$ \hspace{1cm} (11)

The additive flue function, F, is given by

$$F = n Y (Z_f - 1)^{\frac{3 n}{2}} \left(1 - \frac{3 (X_c - X)^2 R^{1 - n}}{2 (Z_f + 1)} \right)$$ \hspace{1cm} (12)

where

$$X_c = R + \frac{2 (1 - R - Y)}{n + 1} - 2 Y (Z_f - 1)^n$$ \hspace{1cm} (13)

The flue factor F in Equation (9) is always additive because the flue outlet is the highest leakage site and will always act to increase the ventilation flows.

With very strong flue exfiltration, even the ceiling can become an infiltration site, through which attic air is drawn into the building. The variable X_c is the critical value of the
ceiling-floor leakage difference X at which the neutral level (zero indoor to outdoor pressure difference) is located at the ceiling in the exact numerical solution. For $X > X_c$ the neutral level will be above the ceiling, and air will flow in through the ceiling. For $X < X_c$ room air will exfiltrate through the ceiling. (These flow directions assume $T_{in} > T_{out}$, and will be reversed if $T_{out} > T_{in}$.) The role of the flue in reducing ceiling exfiltration is evident from the contribution of the Y factor in Equation (13).

The stack factor f_s from Equation (9) is shown in Figure 1a for typical values of $n = 0.67$, $Z_f = 1.5$ and $Y = 0.2$, and for no flue, $Y=0$. Figure 1a shows that treating the flue as a separate leakage site with a stack height above the ceiling has a significant effect on the stack factor f_s. In addition, Figure 1a shows the reduction in f_s as leakage becomes concentrated at single locations, i.e. when $X = R$. When $R = 0$ then $X = 0$ and only a single point can be determined. In Figure 1a, the value of f_s for $R = 0$ is given by a cross for the no flue case and by a star for $Y = 0.2$.

Because the AIM-2 relationships for calculating f_s are approximations, they do not match the exact numerical solution perfectly. Differences between the stack factor estimated by Equation (9) and the exact numerical solution are about ± 0.005 for a house with $Y = 0$ (no flue) to ± 0.01 for $Y=0.2$. With f_s typically about 0.3, these differences represent errors of about $\pm 1.5\%$ in f_s. The maximum difference between exact and approximate stack factors can be as high as 0.03, about 10% in f_s and in Q_s.

Wind Effect Infiltration

For AIM-2 we propose two different models, one for houses with basements or slab on grade construction, and another for houses with crawl spaces. The difference between the two is the pressure coefficient applied to the floor level leaks. For basement or slab on grade construction the floor level leaks are split into four equal parts below each wall, each assumed to have the same pressure coefficient as the walls above them. For crawlspaces the pressure coefficients on the four walls were averaged and used as the pressure coefficient in the crawlspace acting on the floor level leakage between the house and the crawlspace. For both cases the wind pressure coefficients measured by Akins et al. (1979) wind tunnel simulations were used for the walls of the building.

The attic pressure coefficient in AIM-2 is assumed to be an eave-length weighted average of the pressure coefficients on the eave and end wall vents, and the roof surface vents. The eave vents are assumed to have the same pressure as the adjacent wall. The attic roof vents were assumed to have a size equal to the sum of the eave vents.

These algebraically averaged wind pressure coefficients imply a linear relationship between pressure and flow, which is clearly not true if $n \neq 1$ in Equation (1). The errors caused by algebraically averaging pressure coefficients were determined by applying the exact non-linear flow balancing equations to find the actual pressure coefficients on the floor and ceiling required to balance the flow in and out of attics or crawlspaces. The algebraic average pressure coefficient for the four walls of a square building with the wind normal to the upwind wall (the most extreme case) was -0.25, using pressure coefficients from Akins et al. (1979). The exact equations showed that the actual pressure coefficient required to balance the flows was -0.3, with $n=0.67$. This result showed that a simple algebraic average of wall pressure coefficients was sufficiently accurate to define crawl space or attic pressures.
Wind Shelter Effect on Wind Pressures

The wind induced infiltration rate Q_w is given by

$$Q_w = C_{f_w} \Delta P_w^n$$

where ΔP_w is given by

$$\Delta P_w = \frac{\rho_{out} (S_w U)^2}{2}$$

Local shielding by nearby buildings, trees and obstructions is difficult to estimate by inspecting the building site, and uncertainty in estimating the local shelter coefficient S_w is often the major source of error in estimating wind driven infiltration flow rates. Previous ventilation studies have included shelter only in broad classes, with sharp changes from class to class. For example, Sherman and Grimsrud (1980) used a look-up table with five descriptive classes of shelter such as "Light local shielding with few obstructions".

To allow for changes in wind shelter with wind direction, AIM-2 uses the shelter interpolation function suggested by Walker and Wilson (1991) to determine the shelter for the building, S_{wo}. This function takes estimates of wind shelter for winds perpendicular to each side of the building and calculates wind shelter for any intermediate angle. S_{wo} is combined in AIM-2 with a different coefficient (S_{wflue}) for the top of the flue stack to give an improved estimate of the total sheltering. These wind shelter factors are combined linearly:

$$S_w = S_{wo} (1 - Y) + S_{wflue} (1.5Y)$$

where the factor 1.5 is an empirical adjustment found by comparing the AIM-2 model predictions to the exact numerical solution where each leakage site has its own pressure coefficient and shelter. $S_{wflue} = 1.0$ for an unsheltered flue, which protrudes above surrounding obstacles, and $S_{wflue} = S_{wo}$ for a flue top which has the same wind shelter as the building walls. With no flue, $Y = 0$ and $S_w = S_{wo}$.

Table 1 gives the AIM-2 wind shelter factor estimates for winds perpendicular to the sides of the building. This table uses the same shielding class description suggested by Sherman and Grimsrud (1980), with the addition of a new class of "complete shielding". However, it is important to note that although the terrain classes are the same, the shelter values in Table 1 are not the same as Sherman and Grimsrud’s “generalized shielding coefficient”.

Adjusting Windspeed for Local Terrain

The pressure coefficients used to find f_w were taken from wind tunnel tests. For most wind tunnel tests the wind pressure coefficient, C_p, was calculated using a reference wind speed at eaves height, H. Most meteorological data is measured at greater heights and must be converted to the eave height to account for the change in windspeed with height in the atmospheric boundary layer. Walker and Wilson (1990b) showed how meteorological windspeeds measured remotely from the building site can be converted to an eaves height windspeed at the building assuming a power law boundary layer wind velocity profile. Wieringa (1980) recommended using the wind speed at the top of the constant shear stress surface layer when converting wind speeds from one location to another. Wieringa estimated this height to be about 80m plus the area-averaged height δz, of the roughness elements between the two locations.
Using this reference height, the relationship for converting airport windspeeds to local conditions is

\[
U = \left(\frac{80 + \delta_z}{H_{\text{met}}} \right)^{p_{\text{met}}} \left(\frac{H}{80 + \delta_z} \right)^p U_{\text{met}}
\]

(17)

\(p\) and \(p_{\text{met}}\) depend on windspeed, ground roughness, solar insolation and atmospheric stability. Irwin (1979) gives values of \(p\) from 0.12 to 0.47 for a wide range of conditions. For typical urban housing \(p \sim 0.3\), and for meteorological stations located at airports or other exposed sites \(p \sim 0.15\).

Houses with Basements or Slab-on-Grade Construction

The wind factor, \(f_w\), was found by using the exact flow balance equations to determine \(Q_w\) numerically. \(f_w\) was then determined by rearranging Equation (14) and substituting this value of \(Q_w\) and the appropriate value of \(\Delta P_w\). The approximating function for \(f_w\) was generated using the methods discussed earlier, by calculating \(f_w\) over a wide range of leakage parameters and finding functional forms that would reproduce the same characteristic dependence on the leakage location and pressure exponent.

The exact numerical solution for \(f_w\), and its approximating function depend on the set of wind pressure coefficients used. In AIM-2, the wind pressure coefficients from Akins et al. (1979) and the flue cap pressure coefficient from Haysom and Swinton (1987) were used. Using these pressure coefficients, \(f_w\) was found to be approximated by

\[
f_w = 0.19(2 - n) \left[1 - \left(\frac{X + R}{2} \right)^{\left(\frac{2 - Y}{n} \right)} \right] \frac{Y}{4} (J - 2YJ^4)
\]

(18)

where

\[
J = \frac{X + R + 2Y}{2}
\]

(19)

The functional form for \(f_w\) was chosen to produce the correct behaviour for the limiting values of all leakage concentrated in either walls, floor or ceiling, and for \(X = 0\) where the floor and ceiling leakage are equal. The flue height, \(Z_f\), does not appear in Equation (18) because flue height is only felt very weakly through the change in windspeed at the flue/fireplace outlet.

The wind factor calculated using Equation (18) is shown in Figure 1b for \(n = 2/3\), \(Y = 0.2\), and for no flue \((Y=0)\). This figure shows that there is little effect on wind factor \(f_w\) of considering the flue leakage as a hole in the ceiling (equivalent to \(Y=0\)), venting into the attic, or as a separate leakage site with its own flue cap pressure coefficient above the roof \((Y=0.2)\). In the same way as for the stack factor, when \(R = 0\) then \(X = 0\) and only a single point can be determined. In Figure 1b, the value of \(f_w\) for \(R = 0\) is given by a cross for the no flue case and by a star for \(Y = 0.2\). It will be shown later that the major advantage of the separate flue leakage site for wind effect is to allow it to have different wind shelter than the rest of the building.

As with the stack factor, for the wind effect there are differences between the exact numerical solution and the approximating equations. A typical difference in wind factors is about \(\pm 0.005\), or with \(f_w\) typically 0.2, an error of \(\pm 2.5\%\). The maximum error in \(f_w\) is about \(\pm 0.02\) or about \(\pm 10\%).
Houses With Crawl Spaces

For a house with a crawl space, the pressure inside the crawl space was approximated in AIM-2 by the average of the four walls which changed the dependence of f_w on X and R. Using this assumption changed both the exact numerical solution (see Appendix) and the required approximating function. Therefore a different wind factor was required for houses with crawl spaces, f_{wc}. The algebraic approximation for f_{wc} was developed using the same methods as f_s and f_w and is given by:

$$f_{wc} = 0.19(2 - n)X^*R^*Y^*$$ \hspace{1cm} (20)

where

$$R^* = 1 - R\left(\frac{n}{2} + 0.2\right)$$ \hspace{1cm} (21)

$$Y^* = 1 - \frac{Y}{4}$$ \hspace{1cm} (22)

$$X^* = 1 - \left(\frac{X - X_s}{2 - R}\right)^3$$ \hspace{1cm} (23)

and

$$X_s = \frac{1 - R}{5} - 1.5Y$$ \hspace{1cm} (24)

The critical value of the floor-ceiling difference fraction, X_{crit}, above which f_{wc} does not change with X is given by

$$X_{crit} = 1 - 2Y$$ \hspace{1cm} (25)

In the AIM-2 approximation, if $X > X_{crit}$ then X is set equal to X_{crit}.

For the case where all the leaks are in the walls ($R = 0$) the wind factor for houses with crawl spaces should be the same as houses without crawl spaces. Using Equation (21) for this case is $f_{wc} = 0.276$, which is 3% less than for a house with no crawl space. The small difference represents the error caused by using approximating functions for f_w and f_{wc}.

Three other wind tunnel data sets, ASHRAE (1989), Liddament (1986) and Wiren (1984), for wall and roof pressure coefficients were also used to find numerical solutions for f_w. These other sets of pressure coefficients produce wind factors that are functionally the same, but with a difference in the magnitude of the leading coefficient 0.19 in Equations (16) and (18). The two extreme results are from Wiren's and ASHRAE's data sets, and these produce values of f_w that are respectively 10-20% larger and 10-20% smaller compared to the values of f_w found using the data set from Akins et al.

The exact numerical flow balance equations were used to estimate the variability of Q_s with wind direction. These exact calculations of the ventilation rate for each wind direction using pressure coefficients from Akins et al. introduced a variability in f_w of about ±10% with wind direction. The AIM-2 model neglects these wind direction effects.

Combining Wind and Stack Effect Flows
The superposition technique used in AIM-2 adds the stack and wind driven flows non-linearly, as if their pressure differences added, and introduces an extra term to account for the interaction of the wind and stack effects in producing the internal pressure that acts to balance the flows in and out of the building. The AIM-2 model uses a simple first-order neutral pressure level shift that produces the superposition

\[Q = \left(Q_s^{\frac{1}{2}} + Q_w^{\frac{1}{2}} + B_1 (Q_s Q_w)^{\frac{1}{2}} \right)^n \]

(26)

where \(Q \) is the total flow due to combined wind and stack effects \([\text{m}^3/\text{s}]\), and \(B_1 \) is the stack and wind effect interaction coefficient, assumed constant. A study of superposition effects in air infiltration models was performed by Walker and Wilson (1993) to show that simple pressure addition superposition with \(B_1 = 0 \) can produce as little bias as the superposition technique used here. However further parametric studies have shown that the interaction term with \(B_1 \neq 0 \) is necessary when applied over a wider range of leakage distributions.

The constant \(B_1 \) was determined empirically using direct measurements of air infiltration. Analysis of data from the six test houses in several different leakage configurations for periods where \(Q_s \) and \(Q_w \) were approximately equal suggested that a reasonable estimate for \(B_1 \) is -0.33. As discussed further in Walker and Wilson (1993), this analysis method involved least squares fitting to data at low temperature differences to determine the relationship between windspeed and measured ventilation rate and similarly, using low windspeed data to determine an empirical relationship between the temperature difference and the measured ventilation rate. These empirical relationships were then used to calculate \(Q_s \) and \(Q_w \) for any wind speed or temperature difference. Equation 26 was then used to estimate the total ventilation rate and compare it to the measured ventilation rate for different values of \(B_1 \). The value of \(B_1 \) used here proved to be the most appropriate over a wide range of leakage distributions. However, different values of \(B_1 \) would give better results for some specific leakage distributions, so this value of \(B_1 \) is not universal, it just represents the best compromise for the widest range of conditions. Fortunately, the agreement between measured and predicted ventilation rates was not very sensitive to the value of \(B_1 \) because it is a second order effect (compared to the sensitivity to \(f_s \) and \(f_w \), for example). Given the scatter in measured data, selection of other values for \(B_1 \) did not make much difference to the comparison of measured and predicted values. Because \(B_1 \) is negative it reduces the total infiltration rate from the level predicted by a simple sum of pressures superposition.

It is important to keep in mind that the interaction coefficient \(B_1 \) is the only constant that was determined by fits to measured infiltration data. Model evaluation, described in the following section used data sets chosen to be dominated by wind or stack effects, so that interaction term in Equation (24) involving the empirical coefficient \(B_1 \) was negligible. In this way, the model could be tested against independent infiltration measurements that played no part in its development.

Comparison of AIM-2 With Other Ventilation Models

The other models included for comparison to AIM-2 and measured data were: the LBL (USA) model Sherman and Grimsrud (1980), the VFE (Canada) the variable n extensions of the LBL model by Yuill (1985) and by Reardon (1989), the NRC (Canada) model of Shaw (1985), and the BRE (U.K.) model of Warren and Webb (1980).
The two models that most closely resemble AIM-2 use variable leakage distribution. They are Sherman's orifice flow model from Sherman and Grimsrud (1980) (often referred to as the LBL model), and a variable flow exponent model, adapted by Reardon (1989) from Yuill's (1985) extension of Sherman's model that used a power law for envelope leakage. The significant differences between AIM-2 and Sherman's and Yuill's models are:

- AIM-2 does not assume a zero pressure coefficient for the attic or floor level leaks.
- AIM-2 differentiates between houses with crawl spaces and those with basements or slab-on-grade construction.
- In AIM-2 the furnace flue is incorporated as a separate leakage site, at a normalized height Z_f above the floor.
- AIM-2 uses a power law pressure-flow relationship.
- AIM-2 includes a wind-stack pressure interaction term which accounts empirically for the building internal pressure.

The two other ventilation models included in this paper for comparison do not allow for variable leakage distribution. A model developed in the U.K. by Warren and Webb (1980) gives three different stack and wind factors based on the building configuration: detached, semi-detached and terraced (row houses). The model developed by Shaw (1985) calculates stack and wind flow rates using coefficients fitted to measured data at a single test house.

Evaluation of Models with Measured Air Infiltration

AIM-2 and the other models were evaluated by comparing predictions to air infiltration measurements in two houses at the Alberta Home Heating Research Facility. Continuous hourly infiltration measurements were carried out in the test houses using a constant concentration SF$_6$ tracer gas injection system in each house described in detail by Wilson and Dale (1985) and Wilson and Walker (1992). The test houses were single storey wood frame construction with full poured concrete basements and were numbered 4 and 5 at the test facility. An important aspect of the test facility is that the houses were situated in rural terrain. Because the houses were in an East - West row they were unsheltered for winds from North and South and provide strong shelter for each other for East and West winds.

Envelope leakage characteristics were measured in the two houses using a fan pressurization test over the range from 1 Pa to 75 Pa, from which C, n and the 4 Pa leakage area A_4 were determined, see Table 2. To remove the effect of building size on the predictions the ventilation rates were converted from m3/s to Air Changes per Hour (ACH) by dividing by the building volume (approximately 220 m3 for the test houses used in this study).

The leakage distribution was estimated by visual inspection at the test facility. For house 4 with the flue blocked it was estimated that $R=0.5$, $X=0$, $Y=0$. For house 4 with a 7.5 cm diameter orifice in a 15 cm diameter flue it was estimated that $R=0.3$, $X=0$, $Y=0.4$. For house 5 with a 15 cm diameter flue $R=0.1$, $X=0$, $Y=0.6$. Later, the variability in R and X produced by having different people make these estimates will be discussed.

The models were compared by testing their ability to predict wind and stack dominated ventilation rates separately. The effects of different superposition methods for combining wind and stack effect were discussed elsewhere by Walker and Wilson (1993). The ability of the models to predict average hourly ventilation rates for given ambient weather conditions is shown by their bias and scatter compared to the measured data.
The measured data was sorted into bins covering 5 °C indoor to outdoor temperature difference for stack dominated ventilation and 1 m/s wind speed ranges for wind dominated ventilation. The criteria for wind dominated ventilation were $U > 1.5$ m/s and $\Delta T < 10$ °C. For stack dominated ventilation the criteria were $U < 1.5$ m/s and $\Delta T > 10$ °C. To be able to sort for high and low wind speeds and temperature differences, and still provide enough data for binning, a large number of hours of ventilation monitoring were required. For this study 2201 hours were measured in house 4 and 1254 in house 5. Large quantities of data were required due to the substantial hourly variation in ventilation rates.

The average weather conditions for each bin were used as the input values to the models and the model predictions for a given bin are compared to the average measured ventilation rate in the bin. Bias indicates the average error that would be obtained over a long time period if each bin of windspeed or temperature difference were equally likely to occur. Scatter is the variation between the predicted and measured averages from bin to bin, and is an indicator of how well the models follow trends in the data if the bias is removed. The bias can be thought of as the error in proportionality constants, and the scatter as the error in the functional form of the models.

The predictions of AIM-2 and the other four models, are compared to measured data in Table 3 for unsheltered conditions (North and South winds) for house 5 with a 15 cm diameter flue, and for house 4 with the flue blocked. These results show that AIM-2 has the best overall performance for houses with and without furnace flues. For houses with a flue AIM-2 is clearly superior because the furnace flue is treated as a separate leakage site with its own wind pressure and wind shelter coefficients. For the VFE and LBL models the furnace flue leakage is assumed to be in the ceiling. The other two models do not separate the leakage by location on the building envelope so that the flue leakage is simply included in the total leakage for the building, and not concentrated at a single location. The same data used to calculate bias and scatter in Table 3 are shown in Figures 2a and 2b with binned data where the mean is shown by a square symbol and one standard deviation by error bars.

Figure 4a compares the windspeed dependence of the models for house 5 with an open 15 cm diameter flue where the house is heavily sheltered (East and West winds). All the models except AIM-2 significantly underpredict the wind effect infiltration rate Q_w because they cannot have an unsheltered flue outlet with a sheltered building.

The same data points that were binned for Figure 4a are shown individually in Figure 3. This shows the amount of variation present in the measured data and the need for data binning for model comparisons. The measured variation was mainly due to the wind speed and direction variability during the one hour averaging period for the measured data where one standard deviation for a single bin (a range of windspeeds of 1 m/s) is about 0.04 ACH. The uncertainty of the infiltration measurements themselves was about ±5% or ±0.004 ACH (from Wilson and Dale (1985)). Table 4 presents a summary of the bias and scatter for each model for wind dominated sheltered buildings, along with model predictions for a house without a flue. The models of Shaw and Warren and Webb overpredict in part because they are incapable of accounting for the variation in leakage distribution.

Figure 4b illustrates the temperature difference dependence of the models for house 4 with a 7.5 cm diameter restriction orifice in the flue, and Table 5 presents a summary of the bias and scatter for stack dominated ventilation. AIM-2 gave the best overall agreement because it allowed the flue leakage to be above the ceiling height for stack effect. Table 5 also includes the model errors for stack dominated ventilation in house 5 with no flue. As
with wind dominated ventilation the assumptions about leakage distribution, and model coefficients from limited data sets introduced large errors into the model predictions of Shaw and Warren and Webb. In most cases the LBL model had the greatest scatter. This was because its assumption of orifice flow for the building envelope produces an incorrect variation in ventilation rate with windspeed and temperature difference.

Sensitivity to Leakage Distribution

One of the most difficult input parameters to estimate is the distribution of leakage between the floor, walls and ceiling. To estimate the magnitude of variation likely to occur in ventilation rates predicted using different leakage distributions, an informal survey of the staff working at Alberta Home Heating Research Facility was conducted. The survey resulted in eight different estimates of leakage distribution for house 4.

The estimated leakage distributions covered a range of 10% to 45% for floors, 35% to 60% for walls and 20% to 40% for the ceiling. These were significant changes in leakage distribution and indicated the uncertainty with which these values may be estimated, even by people familiar with the structure in question. This range of leakage distribution parameters resulted in predicted ventilation rates from 0.91 to 0.105 ACH, or about ±7% of the average. However, due to the nonlinear nature of ventilation flows this relatively small uncertainty occurs only if the leakage distribution is varied over a reasonable range. Putting all of the leakage in a single location can cause large changes in calculated ventilation rate. e.g. putting all of the leakage in the ceiling would result in zero ventilation because all of the leakage would experience the same pressure difference.

Errors due to leakage distribution estimates were reduced for houses with furnace and fireplace flues because a significant proportion of the leakage has a specific, well known, size and location. This analysis showed that estimates of leakage distribution are not critical unless extreme values are used.

Conclusions

A simple algebraic model, AIM-2, has been developed to calculate ventilation rates from weather conditions and building leakage parameters. The explicit relationships in AIM-2 were developed to reproduce the results of numerical solutions of the exact flow balance equations. Over 3400 hours of measured ventilation rates were used to validate the AIM-2 predictions. By comparing the performance of AIM-2 to both measured data and other simple ventilation models the following conclusions can be made.

- The power law flow relationship and the separate treatment of the furnace flue were significant improvements, reducing errors by up to a factor of five.
- Including the furnace flue (or fireplace) as a separate leakage site allows AIM-2 to account for the effect of the flue on natural ventilation rates better than the other simple models tested in the paper. This is because the furnace flue is located at a different height for stack effect and has its own wind pressure coefficient and wind shelter factor.
- Using a power law pressure-flow relationship ensures that AIM-2 has the appropriate functional form for the dependence of ventilation rate on the wind and stack pressures.
- Typical differences between measured ventilation rates and AIM-2 model predictions were about ±10%

APPENDIX: EXACT NUMERICAL SOLUTION TO FLOW EQUATIONS
AIM-2 and this numerical solution use the same method of separating leak location and generating stack and wind effect pressures. The numerical ventilation model explicitly states the flow through each leak location as a function of the amount of leakage at that location and the effective wind and stack pressures acting at that location. The effective pressure across the leak includes the change in interior pressure of the building required to balance the flows in and out through the envelope. The change in interior pressure is common to the flows for all the leaks and is determined numerically so that the inflow through the envelope is equal to the outflow. Once this internal pressure is known, then the flows through all the leaks and the total ventilation flow are also known. Combining this total flow with the total envelope leakage and the wind and stack effect pressures allows the calculation of wind and stack factors \(f_w \) and \(f_s \) determined from an exact numerical solution.

Stack Effect

The following example calculation shows how the exact equations were developed. In this case, \(T_{in} > T_{out} \) and the neutral pressure plane lies below the ceiling. The same approach was used for other cases, but not given here for brevity. The height of each leak was given in non-dimensionalized form (\(Z \)). It was non-dimensionalized by dividing by the height of the ceiling above grade. At the neutral pressure plane: \(Z = Z_o \).

Ceiling leaks have outflow.

\[
Q_{ceiling} = C_c \Delta P_s^n (1 - Z_o)^n
\]

(A1)

Floor leaks have inflow.

\[
Q_{floor} = C_f \Delta P_s^n (Z_o)^n
\]

(A2)

The furnace/fireplace flue(s) have outflow.

\[
Q_{flue} = C_{flue} \Delta P_s^n (Z_f - Z_o)^n
\]

(A3)

The walls have inflow below the neutral level and outflow above it. Also, the flow generated by the pressure difference profile must be integrated over the wall due to the non-linearity of flow with pressure. For this integration, an element of the wall was determined by its fraction of the total wall height and is given by:

\[
dC_w = \frac{C_w dZ}{H}
\]

(A4)

This fractional wall height was expressed in non-dimensional height

\[
dZ = \frac{dz}{H}
\]

(A5)

Assuming that the leaks are evenly distributed with height over the wall, then the incremental flow \(dQ_w \) to be integrated becomes

\[
dQ_{wall} = C_w (\Delta P_s (Z_o - Z))^n dZ
\]

(A6)

Below the neutral level the infiltration flow is
Performing the integration gives

\[Q_{\text{wall in}} = C_w \Delta P_s \int_0^{Z_o} (Z_o - Z)^n \, dZ \quad (A7) \]

Similarly, for flow out above the neutral level

\[Q_{\text{wall out}} = C_w \Delta P_s \frac{(1 - Z_o)^{n+1}}{n+1} \quad (A9) \]

Equations (A1), (A2), (A3), (A8) and (A9) can be written in terms of \(R, X \) and \(Y \), and all the inflow terms grouped together to give

\[Q_{\text{stack in}} = C\Delta P_s \left(\frac{(R - X)}{2} Z_o^n + \frac{(1 - R - Y)}{n+1}(1 - Z_o)^{n+1} \right) \quad (A10) \]

Similarly for the outflows

\[Q_{\text{stack out}} = C\Delta P_s \left(\frac{(R + X)}{2} (1 - Z_o)^n + \frac{(1 - R - Y)}{n+1}(1 - Z_o)^{n+1} + Y(Z_f - Z_o)^n \right) \quad (A11) \]

Setting the inflows and outflows equal gives a single equation, with a single unknown \(Z_o \)

\[X = \frac{R(Z_o - (1 - Z_o)^n) + \frac{2(1 - R - Y)}{n+1}(Z_o^{n+1} - (1 - Z_o)^{n+1}) - 2Y(Z_f - Z_o)^n}{Z_o + (1 - Z_o)^n} \quad (A12) \]

\(Z_o \) was found using a Newton-Raphson technique.

The net infiltration rate was found by averaging the inflow and outflow together and substituting Equation (A12) for \(X \). After considerable algebraic manipulation, the stack factor was given by

\[f_s = \frac{Z_o^n(1 - Z_o)^n \left(\frac{1 + nR - Y}{n+1} \right) + Y(Z_f - Z_o)^n Z_o^n}{Z_o + (1 - Z_o)^n} \quad (A13) \]

The neutral level determined from the solution to Equation (A12) was substituted in Equation (A13) to obtain a numerical value of the stack factor.

Wind Effect

For wind effect, the pressure across each leak was determined by the pressure coefficient on the exterior surface, \(C_{p_i} \), and the interior pressure coefficient, \(C_{p_{in}} \), that acts to balance the inflows and outflows. For leak \(i \)

\[\Delta P_i = \frac{1}{2} \rho_{out} U^2 (C_{p_i} - C_{p_{in}}) \quad (A14) \]

The wind induced flow at each leakage site was then determined by the flow coefficient for each site and the pressure difference calculated using Equation (A14). Setting the inflow and outflow to be equal resulted in a single equation that is solved for the interior pressure
coefficient.

The Cp's were taken from measured wind tunnel data. The ceiling and floor Cp's were discussed in the main text. The flue pressure coefficient of -0.5 was taken from measured data by Haysom and Swinton (1987) and was corrected for the increased windspeed at the flue top compared to the reference windspeed at eaves height. Using the exponent, p from the boundary layer wind profile

$$C_p_{flue} = -0.5Z_f^{2p} \quad (A15)$$

A value of $p = 0.17$ was used here. Assuming we have a slab on grade or basement house the flow for the walls and floors is given by Equation (A16).

$$Q_{wall,i} = C \left(1 - \frac{R}{2} + \frac{X}{2} - Y\right) \frac{A_i}{\sum A_i} \left(\frac{1}{2} \rho_{out} U^2\right)^n \left(C_{p_{wall,i}} - C_{p_{in}}\right)^n \quad (A16)$$

The procedure for a crawlspace is the same except that the floor level leaks were expressed separately. The flow for the ceiling was given by

$$Q_{ceiling} = C \left(\frac{R + X}{2}\right) \left(\frac{1}{2} \rho_{out} U^2\right)^n \left(C_{p_{ceiling}} - C_{p_{in}}\right)^n \quad (A17)$$

and the flow through the flue(s) was

$$Q_{flue} = CY \left(\frac{1}{2} \rho_{out} U^2\right)^n \left(-0.5Z_f^{2p} - C_{p_{in}}\right)^n \quad (A18)$$

Cp_{in} is then found by grouping the inflows and outflows together (by looking at the sign of the pressure difference across each leak) and equating them. The resulting equation was then solved using a Newton-Raphson numerical technique. The resulting flows were then used to determine the wind factor, f_w.

NOMENCLATURE

- A_4: effective leakage area for 4.0 Pa pressure difference, m2
- A_i: area of wall i, m2
- B_1: wind and stack effect pressure interaction coefficient
- C: flow coefficient, m3/s/Pan
- C_c: leakage flow coefficient, C, of ceiling, m3/s/Pan at H [m]
- C_r: leakage flow coefficient, C, of floor level leaks, m3/s/Pan
- C_{flue}: leakage flow coefficient, C, of flue and fireplaces, m3/s/Pan at H_f
- C_w: leakage of walls, m3/s/Pan
- C_p: wind pressure coefficient
- $C_{p_{ceiling}}$: wind pressure coefficient for ceiling leaks
- $C_{p_{flue}}$: wind pressure coefficient for flue/fireplace top
- $C_{p_{i}}$: wind pressure coefficient for leak i
- $C_{p_{in}}$: wind pressure coefficient for inside building
- $C_{p_{wall,i}}$: wind pressure coefficient for wall if i, stack factor
- f_w: wind factor
\(f_{wc} \) wind factor for a house with a crawlspace
\(F \) flue function
\(g \) gravitational acceleration, m/s\(^2\)
\(H \) ceiling height of top storey above floor (same as eaves height), m
\(H_f \) height of flue outlet above floor, m
\(H_{met} \) height at which \(U_{met} \) is measured, m
\(J \) wind factor parameter
\(M \) stack factor parameter
\(n \) pressure flow exponent
\(p_{met} \) power law exponent of the wind speed profile at the meteorological station
\(p \) power law exponent of the wind speed profile at the building site
\(Q \) flow rate, m\(^3\)/s
\(Q_{ceiling} \) ceiling flow, m\(^3\)/s
\(Q_{floor} \) floor flow, m\(^3\)/s
\(Q_{flue} \) flue/fireplace flow, m\(^3\)/s
\(Q_s \) stack effect flow, m\(^3\)/s
\(Q_{stackin} \) stack effect inflow, m\(^3\)/s
\(Q_{stackout} \) stack effect outflow, m\(^3\)/s
\(Q_w \) wind effect flow, m\(^3\)/s
\(Q_{wall} \) wall flow, m\(^3\)/s
\(Q_{wall,i} \) wall flow through wall \(i \), m\(^3\)/s
\(Q_{wallin} \) inflow through wall, m\(^3\)/s
\(Q_{walayout} \) outflow through wall, m\(^3\)/s
\(R^* \) crawlspace wind factor parameter for \(R \)
\(S_w \) total wind shelter factor
\(S_{wo} \) wind shelter factor for building walls
\(S_{wflue} \) wind shelter factor for flues and fireplaces
\(T_{in} \) indoor temperature, K
\(T_{out} \) outdoor temperature, K
\(U \) wind speed at eaves height at the building site, m/s
\(U_{met} \) wind speed at the meteorological site, m/s
\(X \) difference in leakage fraction between the floor and ceiling
\(X_c \) critical value of \(X \) for which neutral level is at ceiling for stack effect
\(X_{crit} \) critical value of \(X \) for which neutral level is at ceiling for wind effect
\(X_s \) shifted value of \(X \) for crawlspace wind factor
\(X^* \) crawlspace wind factor parameter for \(X \)
\(Y \) flue leakage fraction
\(Y^* \) crawlspace wind factor parameter for \(Y \)
\(Z \) normalized height above floor
\(Z_f \) normalized flue height
\(Z_o \) normalized neutral pressure plane height
\(\delta z \) area averaged height of terrain roughness elements
\(\Delta P \) building envelope pressure difference, Pa
\(\Delta P_i \) pressure across leak \(i \), Pa
\(\Delta P_s \) stack effect reference pressure, Pa
\(\Delta P_w \) reference wind pressure, Pa
\(\Delta T \) indoor-outdoor temperature difference, K
\(\rho_{out} \) outdoor air density, Kg/m\(^3\)

REFERENCES

Table 1. Estimates of Shelter Coefficient

<table>
<thead>
<tr>
<th>Shelter Coefficient, S_w</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>No obstructions or local shielding</td>
</tr>
<tr>
<td>0.90</td>
<td>Light local shielding with few obstructions within two building heights</td>
</tr>
<tr>
<td>0.70</td>
<td>Local shielding with many large obstructions within two building heights</td>
</tr>
<tr>
<td>0.50</td>
<td>Heavily shielded, many large obstructions within one building height</td>
</tr>
<tr>
<td>0.30</td>
<td>Complete shielding with large buildings immediately adjacent</td>
</tr>
</tbody>
</table>

Table 2. House Leakage Characteristics

<table>
<thead>
<tr>
<th>House Number</th>
<th>Flue Configuration</th>
<th>Flow coefficient, C [m3/sPan]</th>
<th>Flow exponent, n</th>
<th>Leakage area at 4 Pa, A_4 [cm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>closed</td>
<td>0.007</td>
<td>0.70</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>open with 7.5 cm diameter orifice</td>
<td>0.010</td>
<td>0.66</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>open with 15 cm diameter flue</td>
<td>0.020</td>
<td>0.58</td>
<td>158</td>
</tr>
</tbody>
</table>
Table 3. Differences Between Model Predictions and Measured Data for Binned Averages on Wind Dominated Ventilation for Unsheltered Buildings at AHHRF

<table>
<thead>
<tr>
<th>Model</th>
<th>House 4: no flue (285 hours)</th>
<th>House 5: 15 cm flue (279 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Scatter</td>
</tr>
<tr>
<td>AIM-2</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>(0.008 ACH)</td>
<td>(0.002 ACH)</td>
</tr>
<tr>
<td>LBL (Sherman)</td>
<td>34%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>(0.018 ACH)</td>
<td>(0.016 ACH)</td>
</tr>
<tr>
<td>VFE (Yuill/Reardon)</td>
<td>25%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>(0.022 ACH)</td>
<td>(0.003 ACH)</td>
</tr>
<tr>
<td>Shaw</td>
<td>45%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>(0.038 ACH)</td>
<td>(0.002 ACH)</td>
</tr>
<tr>
<td>Warren and Webb</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>(0.005 ACH)</td>
<td>(0.003 ACH)</td>
</tr>
</tbody>
</table>

Table 4. Model Errors for Binned Averages of Wind Dominated Ventilation for a Sheltered Building at AHHRF

<table>
<thead>
<tr>
<th>Model</th>
<th>House 4: no flue (464 Hours)</th>
<th>House 5: 15 cm flue (461 Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>scatter</td>
</tr>
<tr>
<td>AIM-2</td>
<td>2%</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>(0.003 ACH)</td>
<td>(0.006 ACH)</td>
</tr>
<tr>
<td>LBL (Sherman)</td>
<td>11%</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>(0.002 ACH)</td>
<td>(0.008 ACH)</td>
</tr>
<tr>
<td>VFE (Yuill/Reardon)</td>
<td>-27%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>(-0.014 ACH)</td>
<td>(0.004 ACH)</td>
</tr>
<tr>
<td>Shaw</td>
<td>65%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>(0.030 ACH)</td>
<td>(0.007 ACH)</td>
</tr>
<tr>
<td>Warren and Webb</td>
<td>43%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>(0.027 ACH)</td>
<td>(0.011 ACH)</td>
</tr>
<tr>
<td>Model</td>
<td>House 4: 7.5 cm flue orifice (102 Hours)</td>
<td>House 5: No flue (74 Hours)</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>AIM-2</td>
<td>-3% (-0.005 ACH)</td>
<td>1% (0.001 ACH)</td>
</tr>
<tr>
<td></td>
<td>2% (0.002 ACH)</td>
<td>7% (0.005 ACH)</td>
</tr>
<tr>
<td>LBL (Sherman)</td>
<td>-14% (-0.019 ACH)</td>
<td>24% (0.015 ACH)</td>
</tr>
<tr>
<td></td>
<td>7% (0.008 ACH)</td>
<td>12% (0.009 ACH)</td>
</tr>
<tr>
<td>VFE (Yuill/Reardon)</td>
<td>-26% (-0.032 ACH)</td>
<td>4% (0.002 ACH)</td>
</tr>
<tr>
<td></td>
<td>2% (0.002 ACH)</td>
<td>7% (0.005 ACH)</td>
</tr>
<tr>
<td>Shaw</td>
<td>42.6% (0.051 ACH)</td>
<td>45% (0.032 ACH)</td>
</tr>
<tr>
<td></td>
<td>2% (0.002 ACH)</td>
<td>7% (0.005 ACH)</td>
</tr>
<tr>
<td>Warren and Webb</td>
<td>-44% (-0.054 ACH)</td>
<td>-22% (-0.018 ACH)</td>
</tr>
<tr>
<td></td>
<td>5% (0.006 ACH)</td>
<td>9% (0.007 ACH)</td>
</tr>
</tbody>
</table>